- •Вопросы госэкзамена 2012 – 2013 г. Для бакалавров
- •Формализация входной информации перед проектированием. Системное (внешнее) проектирование. Частное (внутреннее) проектирование. Проектировщики. Продукт проектирования.
- •Связь системологии и системотехники. Основные понятия, связанные со сложным объектом. Составляющие системного исследования.
- •Проблема управления сложным объектом. Описание объекта в пространстве "управление-отклики-время".
- •Концепция системотехники. Системный подход.
- •Методы ии для решения трудно формализуемых задач. Комбинаторные алгоритмы: проблема сложности.
- •Модели представления знаний. Извлечение и приобретение знаний.
- •Логико-лингвистические модели принятия решений при нечеткой исходной информации.
- •Процедуры в Объектном Паскале. Описание и вызов процедур. Параметры-переменные и параметры-значения. Пример программы.
- •Описание типизованных файлов в программе. Стандартные процедуры и функции для работы с типизованными файлами. Пример программы.
- •Принципы объектно-ориентированного программирования. Описание класса и объекта. Основные элементы класса: поля, методы, свойства, события. Динамика существования объекта.
- •Файловый ввод/вывод информации. Поиск файлов в каталогах. Создание текстового файла в проекте приложения. Диалоги сохранения и открытия файлов.
- •Системный интерфейс пэвм. Функции, характеристики, требования к интерфейсу. Организация обмена данными.
- •Архитектура процессора. Системы команд микропроцессоров (risc-, cisc- и vliw – архитектура процессоров).
- •Арбитраж на шине. Способы задания (смены) приоритетов. Виды арбитража. Примеры реализации.
- •Циклическая смена приоритетов с учетом последнего запроса
- •Смена приоритета по случайному закону
- •Алгоритм наиболее давнего использования
- •Параллельный централизованный арбитраж
- •Система параллельного централизованного арбитража для статических приоритетов
- •Центральный последовательный арбитраж
- •Децентрализованный (распределенный) арбитраж
- •Микропроцессорные системы для автоматизации технологических процессов. Функции управления оборудованием.
- •Архитектура и особенности работы программируемых контроллеров. Особенности распределения памяти.
- •Определение операционной системы. Задачи и функции операционной системы.
- •Архитектура операционной системы.
- •2. Многослойная структура ос. Слоеные системы (Layered systems)
- •3. Виртуальные машины
- •4. Микроядерная архитектура
- •Процессы. Управление процессами.
- •Асинхронные параллельные процессы: взаимоисключение, критические участки, примитивы взаимоисключения, семафоры.
- •Физическая и виртуальная память. Управление памятью.
- •Базы данных (Кара-Ушанов в.Ю.)
- •Модель данных: тип структуры данных; ограничения целостности; действия с данными (проиллюстрировать на примере реляционной модели данных).
- •Реляционный подход к проектированию бд: нормализация отношений путем декомпозиции на основе анализа функциональных зависимостей.
- •Основные этапы проектирования системы бд.
- •Эволюция концепции бд. Отличие представления данных в системе бд от файловой организации данных.
- •Трехуровневая архитектура системы бд: модели данных, схемы структуры данных, отображения и интерфейсы, независимость данных, функционирование системы бд (прохождение запроса).
- •Семиуровневая модель управления взаимодействия открытых систем.
- •Физический уровень
- •Локальные вычислительные сети. Типы, вопросы организации, основные характеристики.
- •Протокол tcp/ip. Состав, функции.
- •3 Уровень
- •4 Уровень
- •7 Уровень
- •Протокол ip
- •Протокол ip
- •Маски ip – адресов.
- •Модели систем массового обслуживания. Марковские случайные процессы. Потоки событий. Классическая смо и смо с отказами. Их основные операционные характеристики.
- •Экономический аспект метрологического обеспечения
- •Информационные измерительные модели
- •Метрологические характеристики эксперта
- •Классификация погрешностей измерений.
- •Постановка задачи обработки результатов измерений.
- •Факторный анализ.
- •Постановка задачи планированного измерительного эксперимента
- •Топологии интерфейсов, их особенности, достоинства и недостатки.
- •Физические основы и логические принципы магнитной записи информации.
- •Математические основы и технические реализации способов формирования изображения на экране и бумаге.
- •Логическая и программная организация системы ввода-вывода, способы организации обмена, функции драйверов устройств.
- •Закон функционирования автомата Мили.
- •Закон функционирования автомата Мура.
- •Концепция процедурного и обьектно-ориентированного программирования.
- •Концепция средо-ориентированного программирования. Основные типы сред как системы программирования.
- •1. Начало (Inception)
- •2. Уточнение (Elaboration)
- •3. Построение (Construction)
- •4. Внедрение (Transition)
Архитектура операционной системы.
1. Монолитное ядро – набор процедур и функций. Ядро совпадает с системой.
Сервисные процедуры соответствуют системным вызовам. Сервисные процедуры выполняются в привилегированном режиме, а пользовательские в непривилегированном.
Недостатки:
перекомпиляция - единственный способ добавить новые компоненты или исключить лишние;
низкая надежность ОС.
2. Многослойная структура ос. Слоеные системы (Layered systems)
Можно разбить всю вычислительную систему на ряд более мелких уровней с хорошо определенными связями между ними, так чтобы объекты уровня N могли вызывать только объекты из уровня N-1. Нижним уровнем в таких системах обычно является hardware, верхним уровнем интерфейс пользователя. Чем ниже уровень, тем более привилегированные команды и действия может выполнять модуль, находящийся на этом уровне.
Слоеные системы хорошо реализуются. При использовании операций нижнего слоя не нужно знать, как они реализованы, нужно знать лишь, что они делают. Слоеные системы хорошо тестируются. Отладка начинается с нижнего слоя и проводится послойно. При возникновении ошибки мы можем быть уверены, что она находится в тестируемом слое. Слоеные системы хорошо модифицируются. При необходимости можно заменить лишь один слой, не трогая остальные. Но слоеные системы сложны для разработки: тяжело правильно определить порядок слоев, и что, к какому слою относится. Слоеные системы менее эффективны, чем монолитные. Так, например, для выполнения операций ввода-вывода программе пользователя придется последовательно проходить все слои - от верхнего до нижнего.
3. Виртуальные машины
Виртуальная машина (ВМ) — программная и/или аппаратная система, эмулирующая аппаратное обеспечение некоторой платформы (target — целевая, или гостевая платформа) и исполняющая программы для target-платформы на host-платформе (host — хост-платформа, платформа-хозяин); или виртуализирующая некоторую платформу и создающая на ней среды, изолирующие друг от друга программы и даже операционные системы;
Программы пользователя |
Программы пользователя |
Программы пользователя |
MS-DOS |
LINUX |
Windows |
Виртуальное Hardware |
Виртуальное Hardware |
Виртуальное Hardware |
Реальная ОС |
||
Реальное Hardware |
||
4. Микроядерная архитектура
Перенос значительной части системного кода на уровень пользователя, как следствие минимизация ядра.
Большинство компонентов такой ОС- самостоятельные программы, взаимодействие между которыми обеспечивает специальный модуль – ядро, называемый микроядром.
Микроядро работает в привилегированном режиме и обеспечивает взаимодействие между программами, планирование процессов, первичную обработку прерываний (определяется характер прерываний), операции вв/выв и базовое управление памятью.
Компоненты системы взаимодействуют друг с другом ч/з микроядро.
Достоинства: 1) высокая степень модульности (легко добавить новые компоненты); повышается надежность системы, выше степень безопасности и организованности
Недостатки: дополнительные накладные расходы, что снижает производительность (быстродействие). 5. Смешанные системы
