- •Система біологічних наук. Зв'язок біологічних наук з іншими науками
- •1. Система біологічних наук
- •Система біологічних наук
- •Методи біологічних досліджень
- •Рівні організації життя
- •Роль неорганічних речовини у життєдіяльності організмів: вода.
- •Роль неорганічних речовини у життєдіяльності організмів: кисень, мінеральні солі.
- •Тема: Органічні речовини живих істот, їх різноманітність та біологічне значення. Будова, властивості, роль у життєдіяльності організмів малих органічних молекул (ліпіди, моносахариди)
- •Органічні речовини живих істот, їх різноманітність та біологічне значення.
- •Будова, властивості, роль у життєдіяльності організмів малих органічних молекул (ліпіди, моносахариди)
- •Будова, властивості, роль у життєдіяльності організмів макромолекул: білки.
- •Принципи дії ферментів, їх роль у життєдіяльності організмів.
- •Макромолекули: нуклеїнові кислоти, їх будова, властивості, функції.
- •Макромолекули: нуклеїнові кислоти.
- •Будова властивості, функції рнк
- •Будова властивості, функції днк
- •Історія вивчення клітини.
- •2. Методи цитологічних досліджень
- •Хімічний склад, будова і функції клітинних мембран
- •Транспорт речовин через мембрани
- •Поверхневий апарат клітини, його функції та особливості будови в організмів різних царств живої природи
- •1. Складники цитоплазми: цитозоль, мембранні і немембранні органели,включення
- •2. Будова і функції цитоскелету, роль його складників у просторовій організації клітини, в організації рухів у клітині та руху клітин.
- •3. Будова клітинного центру, його роль в організації цитоскелету.
- •Будова і функції двомембранних органел: мітохондрії. Клітинне дихання
- •3. Будова і функції двомембранних органел: пластиди. Фотосинтез. Значення фотосинтезу
- •2. Клітинний цикл еукаріотів. Механізми відтворення і загибелі клітин
- •Мітоз. Мейоз
- •Ядро. Будова ядра. Функції ядра. Нуклеоїд прокаріотичних клітин
- •Мітоз. Мейоз
- •Обмін речовин і енергії в клітині – енергетичний і пластичний обмін
- •1. Енергетичний обмін
- •2. Пластичний обмін
- •3. Роль в природі неклітинних форм життя
- •4. Профілактика віл-інфекції/сніДу та інших вірусних хвороб людини
- •Бактерії. Роль бактерій у природі та в житті людини. Профілактика бактеріальних хвороб людини.
- •Найбільш поширені морфологічні типи прокаріотичних клітин
- •3. Профілактика бактеріальних захворювань
- •4.Особливості організації і життєдіяльності одноклітинних еукаріотів. Колоніальні організми.
- •Багатоклітинні організми зі справжніми тканинами.
- •Стовбурові клітини. Диференціація клітин.
- •Принципи взаємодії клітин. Утворення тканин у тварин. Будова і функції тканин. Їх здатність до регенерації
- •Фізіологічна регенерація
- •Репаративна регенерація
- •Патологічна регенерація
- •Органи багатоклітинних організмів
- •Системи органів хребетних тварин
- •Регуляція функцій у багатоклітинних організмів.
- •Колонії багатоклітинних організмів.
- •Гістотехнології. Застосування штучних тканин для лікування захворювань людини
- •Принципи організації , функціонування і властивості молекулярного, клітинного, організменого рівнів організації життя. Основні властивості живого
- •2. Методи генетичних досліджень
- •Методи генетичних досліджень
- •Закони г. Менделя, їх статистичний характер і цитологічні основи
- •Хромосомна теорія спадковості. Зчеплене успадкування.
- •Хромосомна теорія спадковості
- •Зчеплене успадкування
- •Мутаційна мінливість
- •Нормальні й мутантні форми живих організмів
- •Види мутацій. Мутагени
- •Основні закономірності функціонування генів у про- і еукаріотів
- •Генетика людини. Роль генотипу і середовища у формуванні фенотипу
- •Генетика людини
- •Роль генотипу і середовища у формуванні фенотипу
- •Химерні та трансгенні організми. Генетичні основи селекції організмів
- •Химерні та трансгенні організми
- •Генетичні основи селекції організмів
- •Основні напрямки сучасної біотехнології
- •Запліднення. Перiоди онтогенезу у багатоклітинних організмів: ембріогенез. Перiоди онтогенезу у багатоклітинних організмів: постембріональний розвиток
- •Вплив генотипу та факторів зовнішнього середовища на розвиток організму
- •Життєвий цикл у рослин і тварин
- •Ембріотехнології. Клонування
- •Популяція. Характеристика популяцій. Статева і вікова структура популяції. Фактори, які впливають на чисельність популяції. Екологічні чинники
- •Популяція. Характеристика популяцій. Статева і вікова структура популяції. Фактори, які впливають на чисельність популяції
- •Екологічні чинники
- •Адаптивні біологічні ритми
- •Різноманітність екосистем. Розвиток і зміни екосистем. Колообіг речовин і потік енергії в екосистемах. Продуктивність екосистем
- •Різноманітність екосистем. Розвиток і зміни екосистем
- •Колообіг речовин і потік енергії в екосистемах. Продуктивність екосистем
- •Загальна характеристика біосфери. Вчення в.І.Вернадського про Біосферу
- •Роль живих організмів у біосфері. Біомаса
- •Вплив діяльності людини на стан біосфери. Збереження біорізноманіття. Охорона біосфери
- •Вплив діяльності людини на стан біосфери
- •Збереження біорізноманіття. Охорона біосфери
- •Природоохоронні території України
- •Вид, видоутворення. Мікроеволюція. Адаптації як результат еволюційного процесу. Макроеволюційний процес. Сучасні уявлення про фактори еволюції
- •Вид, видоутворення. Мікроеволюція
- •Критерії виду
- •Способи видоутворення
- •Адаптації як результат еволюційного процесу
- •Макроеволюційний процес
- •Сучасні уявлення про фактори еволюції
- •Основні етапи розвитку еукаріотичних організмів
- •Поява основних груп організмів на Землі та формування екосистем Основні події в історії органічного світу
- •Система органічного світу як відображення його історичного розвитку
Макромолекули: нуклеїнові кислоти, їх будова, властивості, функції.
Макромолекули: нуклеїнові кислоти.
Амінокислоти – це органічні кислоти, що містять аміногрупу (–NH2), якій притаманні лужні властивості, та карбоксильну групу (–СООН) з кислотними властивостями. Ці групи, як і атом Гідрогену, зв’язані з одним і тим самим атомом Карбону. Є у складі амінокислот й специфічні для кожної з них частини. Їх називають радикалами (R-групами). Загальна формула амінокислоти має вигляд:
Загалом у тканинах живих істот трапляється понад 100 амінокислот, але до складу білків входять лише 20 основних, які зустрічаються майже в усіх білках.
Існують різні класифікації амінокислот.
Зокрема, амінокислоти поділяють на замінні та незамінні.
Замінні амінокислоти організму людини і тварин здатні синтезуватися з продуктів обміну речовин. Натомість, незамінні амінокислоти в організмах людини і тварин не утворюються, а надходять разом з їжею. Ці амінокислоти синтезують рослини, гриби, бактерії.
Білки, які містять усі незамінні амінокислоти, називають повноцінними, на відміну від неповноцінних, до складу яких не входять окремі незамінні амінокислоти.
Слід зазначити, що для різних видів тварин і людини набір незамінних амінокислот неоднаковий, до того ж він може змінюватися з віком. Наприклад, аргінін або гістидин – замінні для дорослих і незамінні для дітей. Відсутність або нестача однієї чи кількох незамінних амінокислот спричиняють негативний баланс Нітрогену в організмі, порушення біосинтезу білків, гальмування росту й розвитку.
Залишки молекул амінокислот у складі білків сполучені між собою міцним ковалентним зв’язком, який виникає між карбоксильною групою однієї амінокислоти та аміногрупою іншої. Цей тип зв’язку називають пептидним (від грец. пептос – зварений). Завдяки такому міцному зв’язку утворюється сполука, яка складається із залишків двох амінокислот – дипептид. Структури, які складаються з великої кількості залишків амінокислот (від 6–10 до декількох десятків), належать до поліпептидів Поліпептиди з високою молекулярною масою (від 6000 до кількох мільйонів) називають білками. Вони складаються з одного або декількох поліпептидних ланцюгів і можуть містити до кількох тисяч амінокислотних залишків.
Нуклеїнові кислоти – складні високомолекулярні біополімери, мономерами яких є нуклеотиди. Число нуклеотидів у складі однієї молекули нуклеїнової кислоти може становити від 200 до 200 млн. Уперше нуклеїнові кислоти виявили в ядрі клітин, звідки й походить назва цих сполук (від лат. нуклеус – ядро). Але згодом ці сполуки виявили і в інших частинах клітини.
Молекула нуклеотиду складається з трьох частин: залишків нітратної основи, п’ятивуглецевого моносахариду (пентози) та ортофосфатної кислоти. Залежно від виду пентози, що входить до складу нуклеотиду, розрізняють два типи нуклеїнових кислот: дезоксирибонуклеїнову (ДНК) і рибонуклеїнові (РНК). До складу ДНК входить залишок дезоксирибози, а РНК – рибози. У молекулах ДНК і РНК містяться залишки різних нітратних основ. У молекулі ДНК – залишки аденіну (скорочено позначається літерою А), гуаніну (Г), цитозину (Ц) та тиміну (Т), у молекулі РНК – аденіну (А), гуаніну (Г), цитозину (Ц) та урацилу (У). Отже: три типи нітратних основ для молекул ДНК і РНК спільні (нуклеотиди з аденіном, гуаніном і цитозином), натомість тимін міститься лише в молекулах ДНК, тоді як урацил – тільки в молекулах РНК. Як і молекулам білків, молекулам нуклеїнових кислот притаманні різні рівні просторової організації (конформації).
