- •Система біологічних наук. Зв'язок біологічних наук з іншими науками
- •1. Система біологічних наук
- •Система біологічних наук
- •Методи біологічних досліджень
- •Рівні організації життя
- •Роль неорганічних речовини у життєдіяльності організмів: вода.
- •Роль неорганічних речовини у життєдіяльності організмів: кисень, мінеральні солі.
- •Тема: Органічні речовини живих істот, їх різноманітність та біологічне значення. Будова, властивості, роль у життєдіяльності організмів малих органічних молекул (ліпіди, моносахариди)
- •Органічні речовини живих істот, їх різноманітність та біологічне значення.
- •Будова, властивості, роль у життєдіяльності організмів малих органічних молекул (ліпіди, моносахариди)
- •Будова, властивості, роль у життєдіяльності організмів макромолекул: білки.
- •Принципи дії ферментів, їх роль у життєдіяльності організмів.
- •Макромолекули: нуклеїнові кислоти, їх будова, властивості, функції.
- •Макромолекули: нуклеїнові кислоти.
- •Будова властивості, функції рнк
- •Будова властивості, функції днк
- •Історія вивчення клітини.
- •2. Методи цитологічних досліджень
- •Хімічний склад, будова і функції клітинних мембран
- •Транспорт речовин через мембрани
- •Поверхневий апарат клітини, його функції та особливості будови в організмів різних царств живої природи
- •1. Складники цитоплазми: цитозоль, мембранні і немембранні органели,включення
- •2. Будова і функції цитоскелету, роль його складників у просторовій організації клітини, в організації рухів у клітині та руху клітин.
- •3. Будова клітинного центру, його роль в організації цитоскелету.
- •Будова і функції двомембранних органел: мітохондрії. Клітинне дихання
- •3. Будова і функції двомембранних органел: пластиди. Фотосинтез. Значення фотосинтезу
- •2. Клітинний цикл еукаріотів. Механізми відтворення і загибелі клітин
- •Мітоз. Мейоз
- •Ядро. Будова ядра. Функції ядра. Нуклеоїд прокаріотичних клітин
- •Мітоз. Мейоз
- •Обмін речовин і енергії в клітині – енергетичний і пластичний обмін
- •1. Енергетичний обмін
- •2. Пластичний обмін
- •3. Роль в природі неклітинних форм життя
- •4. Профілактика віл-інфекції/сніДу та інших вірусних хвороб людини
- •Бактерії. Роль бактерій у природі та в житті людини. Профілактика бактеріальних хвороб людини.
- •Найбільш поширені морфологічні типи прокаріотичних клітин
- •3. Профілактика бактеріальних захворювань
- •4.Особливості організації і життєдіяльності одноклітинних еукаріотів. Колоніальні організми.
- •Багатоклітинні організми зі справжніми тканинами.
- •Стовбурові клітини. Диференціація клітин.
- •Принципи взаємодії клітин. Утворення тканин у тварин. Будова і функції тканин. Їх здатність до регенерації
- •Фізіологічна регенерація
- •Репаративна регенерація
- •Патологічна регенерація
- •Органи багатоклітинних організмів
- •Системи органів хребетних тварин
- •Регуляція функцій у багатоклітинних організмів.
- •Колонії багатоклітинних організмів.
- •Гістотехнології. Застосування штучних тканин для лікування захворювань людини
- •Принципи організації , функціонування і властивості молекулярного, клітинного, організменого рівнів організації життя. Основні властивості живого
- •2. Методи генетичних досліджень
- •Методи генетичних досліджень
- •Закони г. Менделя, їх статистичний характер і цитологічні основи
- •Хромосомна теорія спадковості. Зчеплене успадкування.
- •Хромосомна теорія спадковості
- •Зчеплене успадкування
- •Мутаційна мінливість
- •Нормальні й мутантні форми живих організмів
- •Види мутацій. Мутагени
- •Основні закономірності функціонування генів у про- і еукаріотів
- •Генетика людини. Роль генотипу і середовища у формуванні фенотипу
- •Генетика людини
- •Роль генотипу і середовища у формуванні фенотипу
- •Химерні та трансгенні організми. Генетичні основи селекції організмів
- •Химерні та трансгенні організми
- •Генетичні основи селекції організмів
- •Основні напрямки сучасної біотехнології
- •Запліднення. Перiоди онтогенезу у багатоклітинних організмів: ембріогенез. Перiоди онтогенезу у багатоклітинних організмів: постембріональний розвиток
- •Вплив генотипу та факторів зовнішнього середовища на розвиток організму
- •Життєвий цикл у рослин і тварин
- •Ембріотехнології. Клонування
- •Популяція. Характеристика популяцій. Статева і вікова структура популяції. Фактори, які впливають на чисельність популяції. Екологічні чинники
- •Популяція. Характеристика популяцій. Статева і вікова структура популяції. Фактори, які впливають на чисельність популяції
- •Екологічні чинники
- •Адаптивні біологічні ритми
- •Різноманітність екосистем. Розвиток і зміни екосистем. Колообіг речовин і потік енергії в екосистемах. Продуктивність екосистем
- •Різноманітність екосистем. Розвиток і зміни екосистем
- •Колообіг речовин і потік енергії в екосистемах. Продуктивність екосистем
- •Загальна характеристика біосфери. Вчення в.І.Вернадського про Біосферу
- •Роль живих організмів у біосфері. Біомаса
- •Вплив діяльності людини на стан біосфери. Збереження біорізноманіття. Охорона біосфери
- •Вплив діяльності людини на стан біосфери
- •Збереження біорізноманіття. Охорона біосфери
- •Природоохоронні території України
- •Вид, видоутворення. Мікроеволюція. Адаптації як результат еволюційного процесу. Макроеволюційний процес. Сучасні уявлення про фактори еволюції
- •Вид, видоутворення. Мікроеволюція
- •Критерії виду
- •Способи видоутворення
- •Адаптації як результат еволюційного процесу
- •Макроеволюційний процес
- •Сучасні уявлення про фактори еволюції
- •Основні етапи розвитку еукаріотичних організмів
- •Поява основних груп організмів на Землі та формування екосистем Основні події в історії органічного світу
- •Система органічного світу як відображення його історичного розвитку
Принципи дії ферментів, їх роль у життєдіяльності організмів.
Каталітична функція притаманна особливим білкам – ферментам, або ензимам, що впливають на перебіг біохімічних реакцій. Каталіз (від грец. каталіз – припинення) – зміна швидкості перебігу хімічних реакцій під дією певних хімічних сполук. Каталітичну функцію в живих організмах – біокаталіз – здійснюють ферменти.
Ферменти бувають простими та складними. Прості ферменти – це білкові молекули (пепсин, трипсин тощо), які складаються лише з амінокислотних залишків. Складні ферменти, крім білкової частини, містять ще й небілкову, яку називають кофактором.
Кофакторами можуть бути неорганічні катіони або аніони, а також органічні речовини (коферменти), наприклад похідні вітамінів. Білковий компонент складних ферментів визначає, яку саме реакцію каталізує певний складний фермент. Але активність складних ферментів проявляється лише тоді, коли білкова частина ферменту сполучається з небілковою.
Каталітична активність ферменту зумовлена не всією його молекулою, а лише її невеликою ділянкою – активним центром. Його просторова структура відповідає хімічній будові речовин, які вступають у реакцію. Активний центр відповідає за приєднання та перетворення сполук, що вступають у реакцію. Саме тому дія ферменту специфічна. Часто до складу активного центру входять похідні вітамінів або атоми металів. В одній молекулі ферменту може бути кілька активних центрів. Ферменти утворюють нестійкі комплекси з речовинами, які вступають у реакцію.
Ферментативна реакція перебігає в 106–1012 разів швидше, ніж у середовищі без ферментів. За кілька секунд чи навіть частки секунди в організмі відбувається складна послідовність реакцій, для проведення якої із застосуванням звичайних хімічних каталізаторів потрібні дні, тижні або навіть місяці та роки. Це пояснюють тим, що для здійснення будь-якої хімічної реакції необхідний контакт між реагентами.
Аби відбулася реакція без участі ферментів, потрібна висока концентрація реагуючих речовин у середовищі або підвищена температура, за якої прискорюється рух молекул і зростає ймовірність контактів молекул реагуючих сполук. Але в організмах концентрація речовин часто дуже низька, а високі температури можуть бути небезпечними. Саме тому біохімічні реакції не можуть відбуватися без участі ферментів.
При контакті з ферментом речовина, що вступає в реакцію, орієнтується у безпосередній близькості від специфічних груп активного центру ферменту. При цьому зменшується стабільність хімічних зв’язків у її молекулі. Відомо, що для перебігу хімічної реакції молекула субстрату повинна перейти у так званий перехідний стан, коли полегшується розрив хімічних зв’язків. Енергію, необхідну для переходу субстрату в активований стан, називають енергією активації (на розрив певного зв’язку витрачається енергії не менше, ніж витрачено на його утворення). Іншими словами, енергія активації – це енергія, потрібна для того, щоб розпочалася відповідна хімічна реакція. Утворюючи комплекс «фермент–речовини, які вступають у реакцію», ферменти знижують енергію активації. Такий комплекс швидко розпадається з утворенням продуктів реакції. Сам фермент при цьому не втрачає своєї активності і може каталізувати наступну подібну реакцію.
Одні ферменти забезпечують розщеплення певних сполук, інші – синтез. Наприклад, фермент целюлаза забезпечує розщеплення клітковини (целюлози). Якщо в реакції беруть участь дві сполуки або більше, кожна з них взаємодіє з ферментом. Фермент при цьому утримує їх близько одна від одної, забезпечуючи реакцію. Активність ферменту проявляється лише за певних умов: тих чи інших значень температури, тиску, рН тощо. Існують і спеціальні речовини, здатні регулювати активність ферментів. Вони зв’язуються з активними центрами ферментів і блокують їхню активність. У ролі таких речовин-інгібіторів можуть виступати йони важких металів: Плюмбуму (Pb), Арсену (As), Аргентуму (Ag). Ферментативні реакції відбуваються у вигляді низки послідовних етапів (до декількох десятків). Ланцюги взаємопов’язаних ферментативних реакцій загалом забезпечують обмін речовин і перетворення енергії в окремих клітинах й організмі в цілому. Ферменти мають певне розташування як у межах окремої клітини, так і в організмі в цілому. У клітині багато ферментів пов’язані з плазматичною мембраною або мембранами окремих органел (мітохондрій, пластид тощо).
