Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МЕТОДИЧКА З БІОЛОГІЇ.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.29 Mб
Скачать
  1. Будова і функції двомембранних органел: мітохондрії. Клітинне дихання

Мітохондрії — це двомембранні органели, які можуть мати форму гранул, паличок або ниток. Мембрани мітохондрій - зовнішня і внутрішня. За своїм складом зовнішня мембрана нагадує мембрани ендоплазматичної сітки, а внутрішня мембрана відрізняється високою своєрідністю і специфічним складом білків. Внутрішня мембрана утворює вирости — кристи. Внутрішнє середовище мітохондрій називається матриксом. У мітохондріях є дві порожнини. Перша з них — це міжмембранний простір, розташований між зовнішньою і внутрішньою мембранами. Друга — внутрішня камера, яка оточена внутрішньою мембраною і заповнена матриксом.

У клітині може бути від кількох штук до кількох тисяч мітохондрій. Головне завдання мітохондрій — забезпечення клітин енергією. Нові мітохондрії в клітині утворюються шляхом поділу старих. Для забезпечення діяльності мітохондрій вони мають власну ДНК у формі кільцевих молекул і рибосоми прокаріотичного типу. Енергія в мітохондрії виробляється в результаті процесу біологічного окиснення. У мітохондріях рослин окиснюються органічні речовини, синтезовані самою рослиною. Мітохондрії тварин і грибів окиснюють органічні речовини, які організм отримує в результаті живлення, хоча і власні білки цих груп організмів також можуть розщеплюватися в мітохондріях.

У результаті гліколізу (це перший етап вивільнення енергії з глюкози), який відбувається в цитозолі, утворюються трикарбонові сполуки. Ці сполуки транспортуються з цитозолю в матрикс мітохондрії, де й відбувається їхнє окиснення до вуглекислого газу й води з допомогою ферментів. Окиснення відбувається ступінчасто, і на кожному його етапі виділяється енергія у вигляді електронів і протонів. Протони захоплюються молекулами-переносниками й накопичуються в міжмембранному просторі, а електрони залишаються на внутрішній стороні мембрани. Накопичені по різні боки мембрани частки з різними зарядами використовуються клітиною для синтезу АТФ з АДФ і фосфатної кислоти.

Загальна формула процесу окиснення трикарбонових сполук і фосфорилювання АДФ виглядає так: 2C3H6O+36O2+36АДФ+36Н3РО4=36АТФ+6СО2+42Н2О

3. Будова і функції двомембранних органел: пластиди. Фотосинтез. Значення фотосинтезу

Пластиди, як і мітохондрії, є двомембранними органелами. Їх форма може бути дуже різноманітною.

Виділяють три основні типи пластид — хлоропласти (зелені), хромопласти (червоні, оранжеві або жовті) і лейкопласти (безбарвні).

Мембрани пластид бувають зовнішньою і внутрішньою. Внутрішня мембрана хлоропластів утворює вирости — ламели. Ламели можуть утворювати окремі замкнені мішечки — тилакоїди. Тилакоїди можуть об’єднуватися у групи — грани, які з’єднуються між собою з допомогою ламел. Внутрішнє середовище пластид називається стромою. Як і мітохондрії, пластиди мають власну ДНК у формі кільцевих молекул і рибосоми прокаріотичного типу. Розмножуються вони шляхом поділу.

У деяких випадках пластиди одного типу можуть перетворюватися на інший. Наприклад, у разі пожовтіння листя восени хлоропласти перетворюються на хромопласти. Ці органели виконують різні функції. У них можуть накопичуватися запасні поживні речовини. З допомогою різних пластид рослини забезпечують забарвлення окремих своїх частин у різний колір.

Але найголовнішою функцією є здійснення фотосинтезу. Цю функцію виконують хлоропласти. У результаті фотосинтезу з вуглекислого газу й води з допомогою сонячної енергії утворюються вуглеводи. Цей процес складається з двох основних фаз — світлової і темнової. У ході світлової фази спочатку кванти світла вловлюються пігментом хлорофілом, який розташований на мембранах тилакоїдів. Енергія квантів переходить до електронів, які захоплюються молекулами-переносниками. Енергія цих електронів використовується в тилакоїдах для синтезу АТФ. Втрачені електрони заміняються електронами з атомів Гідрогену молекул води, які під дією світла, у результаті фотолізу, розпадаються на Гідроген і Оксиген. Звільнені атоми Оксигену взаємодіють між собою й утворюють молекули кисню, що виділяється як побічний продукт реакції. Утворені в результаті відриву електрона від атомів Гідрогену протони підхоплюються іншими молекулами-переносниками. Це молекули динуклеотиди, скорочена назва яких НАДФ. Приєднуючи до себе протони, вони стають акумуляторами хімічної енергії. У темновій фазі фотосинтезу за рахунок енергії НАДФH2 і АТФ, які утворилися під час світлової фази з вуглекислого газу, утворюються молекули глюкози. Сукупність реакцій, які задіяні в цьому процесі, називається циклом Кальвіна.

У більшості рослин світлова й темнова фази фотосинтезу відбуваються в хлоропласті одночасно, а для фіксації вуглекислого газу використовуються трикарбонові сполуки. Такий тип цього процесу називають C3-фотосинтезом. Проте, ряд рослин, особливо ті, які живуть у жаркому кліматі в умовах дефіциту вологи, використовують інші варіанти фотосинтезу. Вони розподіляють світлову й темнову фази або в просторі, або в часі. Це дозволяє суттєво економити воду й дає ще деякі переваги. Фотосинтез за типом товстолистих (така назва дана тому, що цей варіант широко використовують саме рослини родини Товстолисті — каланхое, бріофілюм, очіпок тощо) розводить світлову й темнову фази фотосинтезу в часі. Рослини, які його використовують, інтенсивно поглинають вуглекислий газ через свої продихи вночі. Удень, для економії вологи, продихи закриваються, а зв’язаний уночі запас СО2 використовується у циклі Кальвіна. Так звані С4-рослини (наприклад, кукурудза) використовують просторове розведення реакцій світлової та темнової фаз фотосинтезу. Фіксація СО2 з використанням чотирикарбонових сполук і синтез глюкози відбувається в них у різних клітинах. Такий тип фотосинтезу в умовах жаркого клімату є більш ефективним, ніж звичайний його варіант.

Функціонування клітини прокаріотів як цілісної системи. Поділ клітин прокаріотів.

Клітинний цикл еукаріотів . Механізми відтворення і загибелі клітин

  1. Функціонування клітини прокаріотів як цілісної системи.

Поділ клітин прокаріотів

Характерною ознакою, за якою клітини живих організмів можна розділити на два основні типи, є наявність у клітині ядра. Саме тому живі організми поділяють на еукаріотичні (ядерні) та прокаріотичні (доядерні). Цю ознаку добре видно з допомогою світлового мікроскопа. Тому подібний поділ виник досить давно.

Прокаріотичні клітини складаються з поверхневого апарата й цитоплазми. До складу поверхневого апарата зазвичай входять плазматична мембрана і клітинна стінка, але в деяких прокаріотичних організмів клітинна стінка може бути відсутньою. Як додаткові елементи до поверхневого апарата у прокаріотів можуть входити бактеріальні джгутики, слизові капсули й різноманітні вирости плазматичної мембрани. Клітинна стінка прокаріотів забезпечує їх цілісність і вберігає від розриву під дією внутрішнього осмотичного тиску. Цитоплазма прокаріотів представлена напіврідким цитозолем, у якому розташовані поодинокі рибосоми, та нуклеоїдом (кільцевою молекулою ДНК). Мембранні органели в цитоплазмі відсутні, але плазматична мембрана клітини може утворювати впинання, які виконують різноманітні функції. Середній розмір клітин прокаріотів — від 0,1 до 10 мкм.

Роботу прокаріотичної клітини як єдиної системи забезпечує нуклеоїд. Його ДНК виконує функцію керівного центру клітини. Усі біохімічні процеси відбуваються в цитозолі. У прокаріотичної клітини відсутня така структура, як цитоскелет. Тому обмін речовинами між різними частинами клітини відбувається переважно за рахунок дифузії. Це призводить до виникнення обмежень у розмірі клітин прокаріотів.

Особливістю поділу прокаріотичних клітин є те, що він є простішим і відбувається набагато швидше, ніж поділ еукаріотичних клітин. Під час цього процесу не відбувається ущільнення хромосом. Кільцева молекула ДНК нуклеоїда перед поділом подвоюється. Потім обидві молекули ДНК прикріплюються до протилежних сторін клітинної мембрани. Далі відбувається процес цитокінезу (поділу цитоплазми) шляхом формування нової мембрани і клітинної стінки.