
- •Компьютеры и программы о слове «информатика»
- •К вопросу об алгоритмах
- •Страница арабской рукописи
- •Древнегреческий абак (современная реконструкция)
- •Счет на линиях (средневековый рисунок)
- •От календаря к компьютеру
- •Люди‑компьютеры за работой. Фотография. 1920‑е годы
- •Компьютеры: долгий путь к признанию
- •Томас Ватсон – основатель компании ibm
- •Говард Айкен – создатель Mark I
- •Академик с. А. Лебедев – создатель мэсм
- •Архитектура пришла в эвм
- •Фредерик Брукс – лауреат премии «Компьютерный пионер»
- •Обложка монографии о проекте Stretch
- •Арифмометр конструкции Иоганна Мюллера. 1783 год
- •Знаменитый eniac
- •Гипотетический компьютер 2004 года
- •Вычислительная машина lgp‑30
- •Гарри Хаски возле компьютера swac
- •Легендарный Bendix g‑15
- •Pdp‑8 – самая продаваемая вычислительная машина 1960‑х годов
- •Почему компьютер «персональный»
- •Мипикомпъютер Altair 8800
- •Настольный калькулятор hp 9100
- •Жюль Верн и вычислительная техника
- •Жюль Верн – отец научной фантастики
- •Шарль Ксавье Тома де Кольмар
- •Первая модель арифмометра Тома де Кольмара
- •Арифморель
- •Знаменитый «арифмометр‑фортепиано» Тома де Кольмара
- •Современная реконструкция разностной машины Бэббиджа
- •Великий фантаст Герберт Уэллс
- •Из этимологии компьютерных терминов
- •Программирование на eniac
- •Американский математик Джон фон Нейман
- •Грейс Хоппер
- •Американский математик Джон Уайлдер Таки
- •Рейнольд Томлинсон
- •Буквы алфавитов стран Юго‑Восточной Азии
- •Обозначения больших чисел в Древней Руси
- •Клавиатура ю. Фитча (1886 год)
- •Клавиатура Дж. Уильямса (1890 год)
- •Клавиатура Дж. Бликенсдёрфера (1892 год)
- •Несколько слов о телекоммуникациях
- •Эдуард Эстонье
- •Титульный лист книги э. Эстонье (1904 год)
- •Автоматы и компьютеры Автоматы: от андроида до роботов
- •Механизм управления автоматами Герона Александрийского
- •Монах конструкции Торриано
- •Механизм монаха Торриано
- •Кулачковый цилиндр гидравлического органа Соломона де Ко (1615 г.)
- •Жак де Вокансон
- •Флейтист Вокансона
- •Барабанщик Вокансона
- •Утка Вокансона
- •Автомат фон Кнаусса
- •Три автомата Жаке‑Дро
- •Рисовальщик‑писец Майарде
- •Автомат п. Кинтцинга
- •Жан‑Эжен Робер‑Уден
- •Робер Уден. Урок пения
- •Робот – раб или работник?
- •Карел Чапек
- •Айзек Азимов
- •Говорящие автоматы
- •Альберт Великий
- •Эразм Дарвин
- •Говорящие головы аббата Микаля
- •Вольфганг фон Кемпелен (автопортрет углем)
- •Машина фон Кемпелена
- •Чарльз Уитстон
- •Машина й. Фабера
- •Александр Белл
- •Гомер Дадли
- •Товарищ гроссмейстер…»
- •Турок работы фон Кемпелена
- •Наполеон играет в шахматы с шахматным автоматом в Шенбрунне. Худ. А. Унеховский
- •Аджиб работы ч. Хупера
- •Гонзало Торрес‑и‑Кеведо демонстрирует автомат «отцу кибернетики» Норберту Винеру
- •Еще раз об игре «ним»
- •Ниматрон
- •Эдвард Кондон
- •Реймонд Редхеффер
- •Машина Редхеффера
- •«Крестики‑нолики»
- •Чарльз Бэббидж
- •Уильям Кейстер
- •Релейный автомат Кейстера (внешний вид)
- •Ячейка игрового поля машины Кейстера
- •Эдмунд Беркли
- •Edsac. Три электронно‑лучевые трубки
- •Игровая позиция на экране электронно‑лучевой трубки
- •Дональд Мичи
- •Menace. Спичечный коробок
- •Дэнни Хиллис
- •Tinkertoy. 1‑й вариант
- •Tinkertoy. 2‑й вариант
- •Tinkertoy. Механизм определения текущей позиции
- •Днк‑компьютер maya‑II
- •Литература по истории информатики и вычислительной техники
Edsac. Три электронно‑лучевые трубки
Так что нет ничего удивительного в том, что именно один из членов этого коллектива программистов написал и первую в мире игровую программу. Это был Александр Дуглас, работавший в то время над диссертацией, посвященной анализу возможностей взаимодействия человека и компьютера.
Поскольку это взаимодействие должно быть оперативным, как можно более наглядным и, главное, двусторонним, Дуглас пришел к мысли о необходимости использовать для этого визуальное представление хранящейся в памяти компьютера информации. Однако в то время современных мониторов еще не было, и визуальную информацию можно было вывести только на экран электронно‑лучевой трубки (ЭЛТ). Одна из трех работавших в составе EDSAC трубок могла отображать состояние памяти, на ее экране можно было показать 560 (35x16) светящихся точек, соответствующих значениям 560 бит. Этим и решил воспользоваться Дуглас. Управляя с помощью программы положением светящихся точек, можно было получить на экране то или иное изображение. В качестве устройства ввода Дуглас использовал дисковый телефонный номеронабиратель.
Игровая позиция на экране электронно‑лучевой трубки
В начале партии на экран трубки выводилось игровое поле, после чего игрок выбирал право первого хода. Набранная на телефонном диске цифра «о» сообщала компьютеру, что первый ход принадлежит ему; набрав цифру «1», игрок оставлял первый ход за собой (за ходящим первым закреплен символ «X»). Для того чтобы сообщить компьютеру свой ход, игрок набирал посредством телефонного диска одну из цифр от «1» до «9», которые соответствовали одной из девяти клеток игрового поля. Программа рисовала в выбранной клеточке выбранный игроком символ, и тут же компьютер делал ответный ход, который тоже отображался на экране.
Свою программу Дуглас назвал ОХО – эти буквы вовсе не являются аббревиатурой, а символизируют нолики и крестики. Как мы видим, Дуглас написал ее не для забавы, а с весьма серьезной целью проверки возможности и выработки основных принципов взаимодействия человека с компьютером в ходе работы программы. К сожалению, информация о том, играли в эту игру коллеги Дугласа по кембриджскому университету или нет и если играли, то сколь успешно, отсутствует. А за пределы лаборатории игра так и не вышла – по той простой причине, что компьютер EDSAC существовал в одном‑единственном экземпляре. Но в любом случае написанная Александром Дугласом программа стала первой в истории компьютерной игрой, в которую человек сыграл против вычислительной машины.
Если Кейстеру и Беркли при создании их машин требовалось воплотить в релейных схемах оптимальный алгоритм игры, то английский ученый Дональд Мичи поставил перед собой совсем иную задачу.
Дональд Мичи
Мичи родился в Бирме и получил классическое образование в одной из привилегированных английских школ. В годы Второй мировой войны он работал в Блетчли‑парке, где английские ученые и инженеры создали первый в мире специализированный электронный компьютер Colossus, предназначенный для расшифровки немецких кодов (предложенный Мичи метод дешифрирования считают одним из ключевых факторов, способствовавших успешной работе компьютера). Здесь он познакомился и подружился с гениальным математиком Аланом Тьюрингом.
После войны Мичи изучал в Оксфорде медицину и биологию, занимался генетикой и продолжал сотрудничество с Тьюрингом, который в то время как раз намечал обширную программу исследований в области искусственного интеллекта. Так, они с Мичи собирались написать компьютерные программы для игры в шахматы и надеялись, что эти программы сыграют друг против друга. Смерть Тьюринга не позволила осуществиться многим их планам.
Тьюринг и Мичи сходились в том, что компьютер, обладающий огромной вычислительной мощью, может неимоверно увеличить силу Дональд Мичи человеческого интеллекта. Однако человек, в отличие от машины, способен обучаться. А можно ли применительно к компьютеру говорить об обучении? Они не раз обсуждали этот вопрос. Работа Мичи, выполненная около i960 года, стала одной из первых, в которых была предложена модель обучения компьютера методом проб и ошибок.
Дональд Мичи решил обучать компьютер – и обучать игре в «крестики‑нолики». Возможно, имей Мичи в своем распоряжении настоящий компьютер, он предпочел бы написать программу, моделирующую процесс обучения. Но компьютера у него не было, и Мичи создал удивительное устройство – модель компьютера, состоящую из 304 спичечных коробков. Он назвал его MENACE (Match box Educable Noughts And Crosses Engine – «Обучающаяся машина из спичечных коробков для игры в «крестики‑нолики»»).
Каждый коробок представлял собой одну из позиций, которые могут возникнуть в ходе партии; позиция изображалась на его крышке. Первый ход всегда был за «машиной», поэтому на коробках показывались только позиции с четным количеством символов. Коробки были наполнены бусинками девяти разных цветов, причем каждый цвет был соотнесен с одной из девяти клеток игрового поля.