Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсовая работа по эконометрике.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
376.32 Кб
Скачать
    1. Расчет параметров уравнений линейной и нелинейной парной регрессии.

      1. Расчет параметров линейной парной регрессии

Парная линейная регрессия имеет вид:

ŷx = a + b · x,

где ŷx – результативный признак, характеризующий теоретический пассажирооборот железнодорожных перевозок;

x – фактор (длина железной дороги);

a, b – параметры, подлежащие определению.

Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессии используется метод наименьших квадратов. Он позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака (пассажирооборот железнодорожных перевозок) y от теоретических ŷx будет минимальной. В этом случае для определения параметров a и b линейной регрессии необходимо решить следующую систему уравнений:

n·a + b(x1 + x2 + ...... + x16) = y1 + y2 + .... + y16

a(x1 + x2 + ... + x16) + b(x12 + x22 + ... + x162) = y1x1+ y2x2+ ...+ y16x16.

С учетом обозначений

= (y1 + y2 + .... + y16)/16; = (x1 + x2 + ...... + x16)/16;

= (y1x1+ y2x2+ .....+ y16 x16)/16;

= (x12 + x22 + ...... + x16)/16; Sx2 = – 2

значения параметров линейной регрессии вычисляются по формулам:

b = ( - )/ Sx2 = (72561475,7500–

10622,5000* 5379,5625)/ 4801346,9961= 3,2110

a = - b = 10622,5000- 3,2110* 5379,5625= -6651,2168

На основании исходных данных выполнены расчеты сумм приведенной системы уравнений, теоретических значений функции регрессии, разности функции регрессии и опытных значений, а так же ошибки аппроксимации, которые представлены в таблице 2.1

Таблица 2.1

1

10147

20653

209565991

102961609

426546409

25930,6901

5277,6901

2

9177

39063

358481151

84217329

1525917969

22816,0306

16246,9694

3

7167

14188

101685396

51365889

201299344

16361,9424

2173,9424

4

6499

9307

60486193

42237001

86620249

14217,0017

4910,0017

5

6061

12544

76029184

36735721

157351936

12810,5884

-266,5884

6

6031

4105

24757255

36372961

16851025

12714,2587

8609,2587

7

6004

9472

56869888

36048016

89718784

12627,5620

3155,5620

8

5747

13252

72541448

29964676

175615504

10925,7378

2326,2622

9

4846

10212

49487352

23483716

104284944

8909,2366

1302,7634

10

4807

7149

34365243

23107249

51108201

8784,0080

1635,0080

11

4308

10428

44923824

18558864

108743184

7181,7244

3246,2756

12

4203

4757

19993671

17665209

22629049

6844,5706

2087,5706

13

3824

6504

24871296

14622976

42302016

5627,6057

876,3943

14

3407

4547

15491629

11607649

20675209

4288,6232

258,3768

15

3161

3547

11212067

9991921

12581209

3498,7199

48,2801

16

957

232

222024

915849

53824

-3578,3002

3810,3002

17

662

-

-

-

-

-

-

Сумма

86073

169960

1160983612

539856635

3042298856

169960

0

Ср. знач.

5379,5625

10622,5000

72561475,7500

33741039,6875

190143678,5000

-

-

Sx2 , Sy2

4801346,9961

77306172,2500

-

-

-

-

-

Sx, Sy

2191,1976

8792,3929

-

-

-

-

-

Тогда уравнение регрессии, являющееся линейной моделью пассажирооборота железнодорожных перевозок в зависимости от длины дороги примет вид:

ŷx = -6651,2168+ 3,2110· x