
- •Принцип действия лазера.
- •Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы.
- •Применение первого начала термодинамики к изопроцессам
- •Электризация тел
- •Приборы для измерения влажности
- •Принцип действия
- •Модуляция и детектирование
- •Характеристики волн
- •2) Применение первого начала термодинамики к изопроцессам
- •Закон Ома для полной цепи
- •Зависимость сопротивления от температуры
- •Давление газа:
- •Собственная проводимость
- •Принцип действия тепловой машины.
- •Цикл Карно
- •Гравитационный потенциал:
- •Сила Ампера
- •Взаимодействие проводников с током
- •1) Работа и мощность постоянного тока.
- •Изменение энергии контура за период.
- •Эдс индукции
- •Эдс самоиндукции
- •Опыты Резерфорда
- •Принцип действия трансформатора
- •Применение трансформаторов
- •Применение электролиза в технике
- •Диэлектрики
Закон Ома для полной цепи
Роль источника тока: разделить заряды за счет совершения работы сторонними силами. Любые силы, действующие на заряд, за исключением потенциальных сил электростатического происхождения (т. е. кулоновских) называютсторонними силами.
ЭДС — энергетическая характеристика источника. Это физическая величина, равная отношению работы, совершенной сторонними силами при перемещении электрического заряда по замкнутой цепи, к этому заряду:
Измеряется в вольтах (В).
Закон Ома: Сила тока в цепи постоянного тока прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению электрической цепи.
Энергетические преобразования в цепи:
- закон сохранения
энергии
(А
- работа сторонних сил; Авнеш.- работа
тока на внешнем участке цепи сопротивлением
R;
Авнутр.- работа тока на внутреннем
сопротивлении источникаr.)
Короткое замыкание (КЗ) — электрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.
Задача к билету№15
Дано:
I = 2A
W = 1Дж
L - ?
Решение.
W = L * I^2 / 2
L = 2 * W / I^2
L = 2 * 1 / 4 = 0,5 Гн
Ответ:0.5Гн
Билет 16
Сопротивление проводника. Зависимость электрического сопротивления от температуры.
Идеальный газ.Давление газа. Основное уравнение молекулярно-кинетической теории идеального газа.
Какое сопротивление нужно включить в сеть с напряжением 220 В, чтобы в нем за 10 мин выделилось 66 кДж теплоты.
Ответы на Билет№16
Сопротивление проводника — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.
Сопротивление
(часто обозначается буквой R или r)
считается, в определённых пределах,
постоянной величиной для данного
проводника; её можно рассчитать как
где
R — сопротивление, Ом;
U — разность электрических потенциалов (напряжение) на концах проводника, В;
I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.
Зависимость сопротивления от температуры
Сопротивление R однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины и сечения следующим образом:
Зависимость сопротивления от температуры
Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Сопротивление R однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины и сечения следующим образом:
где ρ — удельное
сопротивление вещества проводника, L —
длина проводника, а S — площадь сечения.
Величина, обратная удельному сопротивлению
называется удельной проводимостью. Эта
величина связана с температурой формулой
Нернст-Эйнштейна:
где
T — температура проводника;
D — коэффициент диффузии носителей заряда;
Z — количество электрических зарядов носителя;
e — элементарный электрический заряд;
C — Концентрация носителей заряда;
— постоянная Больцмана.
Следовательно, сопротивление проводника связано с температурой следующим соотношением:
Сопротивление
также может зависеть от параметров S
и I
поскольку сечение и длина проводника
также зависят от температуры.
2) Идеальный газ — математическая модель газа, в которой предполагается, что: 1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией; 2) суммарный объём молекул газа пренебрежимо мал; 3) между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги; 4) время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют форму упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц.