
- •Оглавление
- •Тематический обзор*
- •1.1 Специфика и системность живого
- •1.2 Основные свойства живых систем
- •1.3 Уровни организации живых систем
- •2 Принципы воспроизводства живых систем
- •3 Основы генетики
- •3.1 Генетика о наследственности
- •3.2 Генетика об изменчивости
- •4 Клеточное строение живых организмов
- •4.1 Становление клеточной теории
- •4.2 Строение и размножение клеток
- •4.3 Типы клеток и организмов
- •5 Происхождение и сущность жизни
- •5.1 История проблемы происхождения жизни и основные гипотезы происхождения жизни
- •6 Теория эволюции органического мира
- •6.1 Становление идеи развития в биологии
- •6.2 Концепция развития ж.Б. Ламарка
- •6.3 Теория катастроф ж. Кювье
- •6.4 Эволюционная теория ч. Дарвина
- •6.5 Комплекс доказательств теории эволюции
- •6.6 Синтетическая теория эволюции (стэ)
- •Основные положения стэ. Сегодня биологами накоплено достаточно материалов, которые можно систематизировать в виде основных положений стэ.
- •6.7 Формы естественного отбора
- •7 Экосистемы
- •7.1 Определение и понятие экосистемы
- •7.2 Виды экосистем
- •7.3 Экологические факторы
- •7.4 Экологическая ниша
- •7.5 Трофические цепи и сети
- •7.6 Круговорот вещества в экосистеме
- •7.7 Устойчивость экосистем
- •7.8 Энергетика и продуктивность экосистем
- •8 Биосфера
- •8.1 Основные понятия и определения
- •8.2 Общая характеристика биосферы
- •8.3 Этапы эволюции биосферы
- •8.4 Строение биосферы
- •9 Человек в биосфере
- •9.1 Антропогенез
- •9.2 Сущность человека
- •9.3 Человек и природа на пути к ноосфере
- •9.4 Современный экологический кризис и его специфика
- •9.5 Охрана окружающей среды в современном мире
- •10.1 Принцип симметрии. Понятие симметрии в современной науке
- •10.2 Принцип дополнительности
- •10.3 Принцип неопределенности в. Гейзенберга
- •10.4 Принцип суперпозиции
- •10.5 Принцип соответствия
- •11.1 Проблема соотношения динамических и статистических законов
- •12 Принцип возрастания энтропии
- •12.1 Формы энергии
- •12.2 Источники энергии
- •12.3 Первый закон термодинамики
- •12.4 Второй закон термодинамики
- •12.5 Энтропия открытой системы. Термодинамика жизни
- •13 Закономерности самоорганизации. Принципы универсального эволюционизма
- •13.1 От моделирования простых систем к моделированию сложных
- •13.2 Характеристики самоорганизующихся систем
- •13.3 Глобальный эволюционизм
- •13.4 На пути к постнеклассической науке XXI века
- •Концепции современного естествознания (курс 2) юнита 3
2 Принципы воспроизводства живых систем
Все живые организмы имеют в своем составе простые неорганические молекулы: азот, воду, двуокись углерода. Из них в ходе химической эволюции появились простые органические соединения, ставшие в свою очередь строительным материалом для более крупных молекул. Так появились макромолекулы – гигантские молекулы (полимеры), построенные из множества мономеров. Существуют три типа макромолекул: полисахариды, белки и нуклеиновые кислоты. Мономерами для них служат соответственно моносахариды, аминокислоты и нуклеотиды. Белки и нуклеиновые кислоты являются «информационными» молекулами, так как в их строении важную роль играет последовательность мономеров, которая может быть весьма разнообразной. Полисаха-риды играют роль резерва энергии и строительного материала для синтеза более крупных моле-кул. К ним относятся крахмал, гликоген, целлюлоза.
Белки – это макромолекулы, представляющие собой очень длинные цепи из аминокислот – органических (карбоновых) кислот, содержащих, как правило, одну или две аминогруппы (-NH2). В растворах аминокислоты способны проявлять свойства как кислот, так и оснований. Это делает их своеобразным буфером на пути опасных физико-химических изменений. Они образуют широ-кий ряд химических связей с различными реакционноспособными группами, что существенно для структуры и функций белков. В клетках и тканях встречается свыше 170 аминокислот, но в состав белков входит только 20. Именно последовательность аминокислот, соединенных друг с другом пептидными связями, определяет первичную структуру белков. На долю белков приходится свыше 50 % общей сухой массы клеток.
Большинство белков выполняет функцию катализаторов (ферментов). В их пространственной структуре есть активные центры в виде углублений определенной формы. В такие центры попа-дают молекулы, превращение которых катализируется данным белком. Также белки играют роль переносчиков, например, гемоглобин переносит кислород от легких к тканям. Мышечные сокращения и внутриклеточные движения – результат взаимодействия молекул белков, функция которых заключается в координации движения. Есть белки – антитела, функцией которых явля-ется защита организма от вирусов, бактерий и т.д. Активность нервной системы зависит от белков, с помощью которых собирается и хранится информация, поступающая из окружающей среды. Белки, называемые гормонами, управляют ростом клеток и их активностью.
Довольно хорошо изучены сегодня молекулярные основы обмена веществ в клетке. Существуют три основных типа обмена веществ (метаболизма):
– катаболизм, или диссимиляция – процесс расщепления сложных органических соедине-ний, сопровождающийся выделением химической энергии при разрыве химических связей;
– амфоболизм – процесс образования в ходе катаболизма мелких молекул, которые затем принимают участие в строительстве более сложных молекул;
– анаболизм, или ассимиляция – разветвленная система процессов биосинтеза сложных молекул с расходованием энергии аденозинтрифосфорной кислоты (АТФ).
Процессы жизнедеятельности живых организмов определяются взаимодействием двух видов макромолекул – белков и ДНК. Генетическая информация организма хранится в молекулах ДНК. Она служит для зарождения следующего поколения и производства белков, контролирующих почти все биологические процессы. Поэтому нуклеиновым кислотам принадлежит такое же важ-ное место в организме, как и белкам. Кроме того, как белки, так и нуклеиновые кислоты обладают одним очень важным свойством – молекулярной дисимметрией (асимметрией), или молекулярной хиральностью (от греч. cheir – рука). Это свойство жизни было открыто Л. Пастером в ходе иссле-дования строения кристаллов веществ биологического происхождения – солей виноградной кис-лоты. В своих опытах Пастер обнаружил, что не только кристаллы солей, но и их водные растворы способны отклонять поляризованный луч света, т.е. они являются оптически активными. Позже они получили название оптических изомеров. У растворов веществ небиологического происхож-дения свойство оптической изомерии отсутствует, строение их молекул симметрично.
Сегодня идеи Пастера подтвердились, и считается доказанным, что молекулярная хиральность присуща только живой материи и является ее неотъемлемым свойством. Вещество неживого про-исхождения симметрично в том смысле, что молекул, поляризующих свет влево и вправо, в нем всегда поровну. А в веществе биологического происхождения всегда присутствует отклонение от этого баланса. Белки построены из аминокислот, поляризующих свет только влево (L-конфигура-ция), нуклеиновые кислоты – из сахаров, поляризующих свет только вправо (D-конфигурация). Таким образом, хиральность заключается в асимметрии молекул, их несовместимости со своим зеркальным отражением, как у правой и левой руки, что и дало современное название этому свой-ству. Интересно отметить, что если бы человек вдруг превратился в свое зеркальное отражение, то с его организмом все было бы нормально до тех пор, пока он не стал бы есть пишу растительно-го или животного происхождения, которую он просто не смог бы переварить.
Также Пастера волновал вопрос, как возникло это явление, как оно связано с истоками самой жизни на нашей планете. Он считал, что появление жизни, живых дисимметричных молекул происходило из неживых симметричных молекул. В качестве возможных причин превращения неживой молекулярной симметрии в живую, молекулярную дисимметрию Пастер называл мощ-ные электрические разряды, геомагнитные колебания, вращение Земли вокруг Солнца, появление Луны. Но попытки экспериментально проверить эту гипотезу путем моделирования таких условий в лаборатории ни к чему не привели.
Нуклеиновые кислоты – это сложные органические соединения, представляющие собой фосфорсодержащие биополимеры (полинуклеотиды). Молекула нуклеотида состоит из пятиугле-родного сахара, азотистого основания и фосфорной кислоты. Существует два типа нуклеиновых кислот – дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Свое название нуклеиновые кислоты (от лат. nucleus – ядро) получили из-за того, что впервые были выделены из ядер лейкоцитов (швейцарским биохимиком Ф. Мишером). Позже было обнаружено, что нуклеиновые кислоты могут находиться не только в ядре, но и в цитоплазме и ее органоидах. Молекулы ДНК вместе с белками-гистонами образуют вещество хромосом.
Доказательство генетической роли ДНК было получено в 1944 г. О. Эйвери в опытах на бакте-риях. Тогда же было установлено, что в ДНК используется только четыре азотистых основания – аденин (А), тимин (Т), гуанин (Г), цитозин (Ц). В состав РНК вместо тимина входит урацил (У). Аденин и гуанин – это пуриновые основания, цитозин и тимин – пиримидиновые.
24 апреля 1953 г. произошло одно из величайших открытий в биологии. В этот день была опубликована статья американского биохимика Джеймса Уотсона и английского биофизика Френсиса Крика, раскрывающая структуру молекулы ДНК. Рентгеносруктурные исследования показали, что ДНК состоит из двух цепей, закрученных в двойную спираль. Роль остовов цепей играют сахарофосфатные группировки, а перемычками служат основания пуринов и пиримидинов. Каждая перемычка образована двумя основаниями, присоединенными к двум противоположным цепям, причем, если у одного основания одно кольцо, то у другого – два. Таким образом, образуются комплементарные пары: А–Т и Г–Ц. Это значит, что последовательность оснований одной цепи однозначно определяет последовательность оснований в другой, комплиментарной цепи молекулы.
Ген – это участок молекулы ДНК или РНК (у некоторых вирусов). РНК содержит 4–6 тысяч отдельных нуклеотидов, ДНК – 10–25 тысяч. Если бы можно было вытянуть ДНК одной челове-ческой клетки в непрерывную нить, то ее длина составила бы 91 см.
И все же рождение молекулярной генетики произошло несколько раньше – в 1941 г., когда американцы Дж. Бидл и Э. Тэйтум установили прямую связь между состоянием генов (ДНК) и синтезом ферментов (белков). Именно тогда появилось знаменитое высказывание: один ген – один белок. Позже было выяснено, что основной функцией генов является кодирование синтеза белка.
После этого ученые сконцентрировали свое внимание на вопросе, как записана генетическая программа и как она реализуется в клетке. Для этого нужно было выяснить, каким образом всего четыре основания могут кодировать порядок расположения в молекулах белка целых двадцати аминокислот. Основной вклад в решение этой проблемы внес знаменитый физик-теоретик Г. Гамов в середине 1950-х гг.
По его предположению, для кодирования одной аминокислоты используется сочетание из трех нуклеотидов ДНК. Эта элементарная единица наследственности, кодирующая одну амино-кислоту, получила название кодон. В 1961 г. гипотеза Гамова была подтверждена исследованиями Ф. Крика. Так был расшифрован молекулярный механизм считывания генетической информации с молекулы ДНК при создании белков.
В живой клетке имеются органеллы – рибосомы, которые «читают» первичную структуру ДНК и синтезируют белок в соответствии с записанной в ДНК информацией. Каждой тройке нуклеотидов ставится в соответствие одна из двадцати возможных аминокислот. Именно так первичная структура ДНК определяет последовательность аминокислот синтезируемого белка, фиксирует генетический код организма (клетки).
Кодоны могут образовываться следующими триплетами – АЦА, АГЦ, ГГГ, ЦГГ и т.д. Полное число таких триплетов – 64. Из них три являются стоп-сигналами, а 61 кодирует 20 аминокислот. Размер гена связан с размером того белка, который им кодируется. Так, белок, состоящий из 200 аминокислот, будет закодирован 200 кодонами, т.е. 600 парами нуклеотидов. Таким образом, молекулу ДНК можно представить в виде последовательности букв-нуклеотидов, образующих текст из большого их числа, например АЦАТТГГАГ. В таком тексте и содержится информация, определяющая специфику каждого организма – человека, дельфина и т.д.
Генетический код не сводится только к кодонам. На основе кодонов образуются более крупные комплексы – цистроны, которые определяют последовательность аминокислот в системе «белок – фермент». Блоком цистронов управляет оперон.
Генетический код всего живого, будь то растение, животное или бактерия, одинаков. Такая особенность генетического кода вместе со сходством аминокислотного состава всех белков свидетельствует о биохимическом единстве жизни, говорит о происхождении всех живых существ на Земле от единого предка.
Также был расшифрован механизм воспроизводства ДНК. Он состоит из трех частей:
1) репликации;
2) транскрипции;
3) трансляции.
Репликация – это удвоение молекул ДНК.
Основой репликации является уникальное свойство ДНК самокопироваться, что дает возмож-ность деления клетки на две идентичные. При репликации ДНК, состоящая из двух скрученных молекулярных цепочек, раскручивается. Образуются две молекулярные нити, каждая из которых служит матрицей для синтеза новой нити, комплементарной к ней. При этом Т в новой цепи располагается против А в старой и т.д. После этого клетка делится, и в каждой клетке одна нить ДНК будет старой, а вторая – новой. Нарушение последовательности нуклеотидов в цепи ДНК приводит к наследственным изменениям в организме – мутациям.
Транскрипция – это перенос кода ДНК путем образования одноцепочной молекулы инфор-мационной РНК на одной нити ДНК.
И-РНК – это копия части молекулы ДНК, состоящей из одного или группы рядом лежащих генов, несущих информацию о структуре белков.
Трансляция – это синтез белка на основе генетического кода и-РНК в особых частях клетки – рибосомах, куда транспортная РНК доставляет аминокислоты.