
- •1 Кiрiспе
- •2 Цифрлық байланыс жүйелерінің элементтері және функционалды сұлбасы.
- •4 Цифрлық сигналдар және олардың негiзгi параметрлерi.
- •5 Сигнал түрлерi, кездейсоқ және детерминирленген негізгі сипаттаммалары мен параметрлері: спектрлік тығыздық, автокорреляция, өзара корреляция, ортогоналдығы.
- •6 Байланыс арналары және олардың сипаттамалары. Сымды, талшықты-оптикалық және сымсыз арналар.
- •7.Байланыс арналарының математикалық үлгілері.
- •9.Үзіліссіз дискретті арна және кеңейтілген дискретті арна түсініктерінің анықтамалары мен олардың сипаттамалары.
- •10. Синхронды және асинхронды да түсінігінің анықтамасы. Да–ның анизохронды сигналын синхронды да – мен орайластырудың ерекшелiктерi.
- •14 Өшiрiлетiн симмитриялы арна.
- •15 Байланыс арнасындағы бөгеуліктер.
- •17Импульсты бөгеуілдер
- •19 Таржолақты тарату. Арнаның тарату жылдамдығы мен қеңжолағы арасындағы қатынас, Шеннон формуласы.
- •21 Сапа белгісі, сигнал-шу қатынасы.
- •22 Цифрлық сигналдарды табу/демодуляциялау.
- •23 Гаусстық шуда екілік сигналдарды табу.
- •26 Символ арасындағы интерференция.
- •30.Энергетикалық спектрлердің қалыптасуы.
- •31. Цифрлық ағындарда сыз/қ (арналық) сигн/ға түрлендіру. Цифр/қ кодалау алгоритмдері:
- •34.Скремблирование.
- •35 Жолақты модуляция және демодуляция
- •39. Модуляцияланған толқындардың спектрлік сипаттамасы.
- •40. Гаусс шуындағы сигналдарды қабылдау.
- •43 Оралғыға тұрақты модуляцияланған сигналдар бағасы және оларды салыстыру.
- •44 Сипаттамалары уақыт бойынша өзгеретiн арнамен сигналдарды тарату және қабылдау ерекшелiктерi.
- •45 Цифрлық байланыс жүйесіндегі синхрондау әдістері .Сигнал параметрлерін бағалау.
- •47 Цифрлық байланыс жүйесіндегі синхрондау әдістері. Сигнал параметрлерін бағалау.
- •48 Сигналды демодуляциялау арқылы тактілі синхронды және тасымалдаушыны қалпына келтіру.
- •49. Синхронды және асинхронды жүйелердегі синхрондау. Элементтері бойынша синхрондау, топтық және циклдық синхрондау түсiнiктерiнiң анықтамалары
- •51. Фазалар ауытқуының мүмкін болатын шамалары туралы түсiнiк.
- •53. Синхрондау құрылғылары параметрлерін есептеу.
- •54. Бөгеулікке тұрақты кодалау әдістері мен құрылғылары. Қателерді табу және жөндеудің негізгі принциптері.
- •57. Түзетуші кодтардың жіктелуі.
- •58. Сызықтық блокты кодтар.
- •60. Хэмминг кодтары. Циклдік кодтар
- •61. Боуз-Чоудхури-Хоквингэм кодтары.
- •72. Керi байланысты хабар тарату жүйелері Керi байланысты тарату жүйелердiң сипаттамасы мен олардың ерекшiлiктерi.
- •73. Ақпаратты кері байланысты (акб) және шешушi керi байланысты (шкб) жүйелерiнiң құрылымдық сұлбасы, сипаттамалары және жұмыс iстеу алгоритмдерi
- •75 Қызметтік сигналдарды күтуші, тоспалап (блокировка) және үзiлiссiз таратушы, мекенжайын қайта сұраушы жүйелер.
- •76 Ақпаратты жоғалудан және қабаттасудан қорғаушы алгоритм. Ақпаратты тарату ақиқаттылығын жоғарылату.
- •77 Ақпаратты кері байланысты (акб), шешушi керi байланысты (шкб) және түзетушi кодты жүйелердің салыстырмалы сипаттамалары.
- •78 Цифрлық байланыс жүйесінде деректердi сығу
- •79 Шығынсыз сығу алгоритмдерi: rle, lzw ( Лемпелла –Зива-Уэлча), Хаффман. Факцимильдiк байланыста Хаффман алгоритмiн қолдану ерекшелiгi ( ccit кестесiнде бекiтiлген Хаффман алгоритмiн қолдану).
- •81. Бейімделуші дифференциалды икм (адикм), жолақты - бөлiнген адикм. Мсэ-нiң g.722 ұсынысы. Celp- коды (кодтық кiтаппен сызықтық- болжау кодасы).
- •82 1,2,3 Деңгейдегi mpeg сығу алгоритмдерi.
- •83 Бейнесигналдарды сығу. Jpeg сығу алгоритмi.
- •85 Бейнесигналдарды кодтау әдiстерi.
82 1,2,3 Деңгейдегi mpeg сығу алгоритмдерi.
Алгоритм сжатия МРЕС, уровни 1,2,3. Международная организация по стандартизации (1п1егпа1юпа1 Ог^ашгайоп &г 81апс1агсН2а1:юп - 180) и экспертная группа по вопросам движущегося изображения (Мо1юп РюШге Ехрег1§ Сгоир - МРЕС) разработали стандарт аудиосжатия для сигнала, синхронизированного с сжатым видеосигналом, известный как МРЕС. В этой схеме объединены свойства МЬТ81САМ (Ма§кт§ рапегп айарйуе 1Муег§а1 8иЬЬапд 1п1е§га1ес1 Сойт§ Апд МиШр1ехт§ - универсальные интегральные средства кодирования и уплотнения по поддиапазонам с маскировкой и адаптацией к кодограмме) и А8РЕС (Айарйуе 8рес1га1 РегсерШа1 Еп1гору Содт§ — адаптивное спектрально-восприимчивое кодирование энтропии). В схеме использованы три уровня (коды) увеличивающейся сложности и улучшающейся субъективной
|
Р(Х1) |
Код |
гп |
гпР(Х|) |
аа |
0,5329 |
1 |
1 |
0,5329 |
аЬ |
0,1825 |
0 |
2 |
0,365 |
Ьа |
0,1825 |
11 |
3 |
0,5475 |
ЬЬ |
0,0625 |
101 |
4 |
0,25 |
ас |
0,0146 |
10000 |
5 |
0,073 |
са |
0,0146 |
10011 |
6 |
0,0876 |
Ьс |
0,005 |
100100 |
7 |
0,035 |
сЬ |
0,005 |
1001011 |
8 |
0,04 |
ее |
0,0002 |
1001010 |
8 |
0,0016 |
Кодер действует в соответствии с моделью реального времени порога спектральной восприимчивости человека. Этот порог представляет собой зависящую от частоты границу или порог, который отмечает уровни звукового давления, ниже которых человеческое ухо не может воспринимать сигналы. Эта кривая, названная порогом остроты слуха, генерируется во время слухового теста. Порог остроты обычно присутствует на уровнях амплитуды как функция спектрального положения и во многом подобен кривой спектра мощности. Этот порог представляет собой изменяющуюся во времени функцию кратковременной спектральной плотности мощности и имеет локальные максимумы в соответствии с тонами высокого уровня и тонообразными сигналами (называемыми тоналами). Повышение порога вследствие наличия сильных тоналов, приводит к локальной маскировке спектральных компонентов ниже нового порогового уровня. Спектральные компоненты сигнала, лежащие ниже порога слышимости, объявляются несущественными и не кодируются в процессе сжатия. Сигналы, превышающие зависящий от частоты порог, кодируются с достаточной точностью, позволяющей удерживать ошибку аппроксимации ниже уровня остроты. Этот процесс завершается делением спектра множеством узкополосных фильтров и присвоением достаточного числа бит для описания каждого выхода фильтра относительно его амплитуды, которая расположена выше порога. Таким образом, сигналу, в определенной полосе составляющему 30 дБ выше порога, будет при квантовании выделено 5 бит. В этом случае шум квантования падает ниже порога, так как отношение шум/сигнал квантования сократилось на 6 дБ на бит. Типичный график порога остроты представлен на рисунке 9.6.
Кодер работает следующим образом. Стандартный 16-битовый аудиосигнал РСМ усекается и преобразуется в компоненты спектральной подполосы с помощью группы многофазных фильтров, состоящей из 32 равномерно расположенных полосовых фильтров. Блок фильтра создается с помехами соседнего канала, превосходящими 96 дБ, - уровень, требуемый для подавления искажения восприимчивости, вызванного шумом квантования. Фильтрованные выходные сигналы выбираются с частотой Найквиста для каждой полосы пропускания диапазона частот, В декодере этот процесс обращается. Частота дискретизации каждого многополосного фильтра увеличивается до частоты исходного сигнала источника с помощью интерполирования сигналов подполосы, образованных на выходах полосы пропускания блока синтетических фильтров. На рисунке 9.7 представлена блочная диаграмма аудиокодера и декодера уровней I и II стандарта МРЕО.
На уровне III стандарта МРЕО/18О (МРЗ) достигается разрешение более высокой частоты, которое весьма точно соответствует критической разрешающей способности человека. Это усовершенствованное деление достигается посредством дальнейшей обработки 32 подпалосных сигналов с помощью перекрывающегося или усеченного 6-точечного или 18-точечного модифицированного дискретного косинус-преобразования (тодШед сИ§сге1е ссшпе 1гап8&гт — МБСТ).