Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Prakticheskaya_rabota.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
355.33 Кб
Скачать

Практическая работа №2 Пути повышения экономичности двс

Повышение экономичности ДВС достигается совершенствованием их конструкции. Основой сокращения расхода топлива при этом является улучшение процесса его сгорания в цилиндрах. В бензиновых карбюраторных ДВС нетяговые режимы (холостой ход и принудительный холостой ход) характеризуются высокой концентрацией в ОГ оксида углерода и углеводородов из-за неудовлетворительного перемешивания топлива с воздухом. Существует несколько направлений реализации технических средств, позволяющих уменьшить выброс токсичных веществ с ОГ на режиме принудительного холостого хода.

В настоящее время распространение находят устройства второго вида (прекращается горение топлива на режиме принудительного холостого хода), к которым относятся экономайзеры принудительного холостого хода. Экономайзер принудительного холостого хода отключает подачу топлива воздушной смеси через систему холостого хода на режиме принудительного холостого хода, т. е. при торможении автомобиля двигателем, когда отпущена педаль управления дроссельными заслонками, а сцепление не выключено. При режиме принудительного холостого хода дроссельные заслонки закрыты, а частота вращения коленчатого вала превышает частоту вращения на холостом ходу. С помощью экономайзера перекрывается выход топливовоздушной эмульсии, что исключает выброс в атмосферу оксида углерода (СО) и одновременно уменьшает расход топлива. Например, использование такого экономайзера на автомобиле ЗИЛ-130 обеспечило реальную экономию топлива на 1, 5—2 % при снижении содержания СО в 2, 1 раза и углеводородов в 1, 35 раза во время замедления хода автомобиля.

Использование электронных средств регулирования состава горючей смеси. Применение электронных карбюраторных систем не требует существенных изменений всей подачи топлива, поскольку карбюратор используется как основной дозирующий орган, к которому добавочно устанавливается электронный регулятор, уточняющий состав горючей смеси. В результате применения электронного управления дроссельной заслонкой карбюратора расход топлива уменьшается вследствие прекращения его подачи на принудительном холостом ходу (на 1—4 %) и регулирования частоты вращения вала ДВС на холостом ходу (на 1—2 %), суммарное снижение расхода топлива в условиях эксплуатации составляет 8—10 %.

Применение электронных систем управления впрыском бензина дает снижение расхода топлива при одновременном уменьшении концентрации токсичных компонентов в ОГ. Здесь вместо карбюраторов применяются специальные распылители, где происходит распад струи жидкого топлива на мелкие однородные капли, истекающие через сопло вместе с воздухом со скоростью звука, и полученная таким образом топливовоздушная смесь поступает через соответствующий регулятор во впускной трубопровод и цилиндры ДВС. Специальные электронные датчики системы подают в микроЭВМ информацию о разряжении во впускном трубопроводе, степени и скорости открытия дроссельной заслонки, температурном режиме ДВС и температуре воздуха, поступающего в цилиндры, частоте вращения коленчатого вала ДВС и т. д. ЭВМ за доли секунды перерабатывает всю информацию и подает временной импульс к впрыскивающим форсункам, обеспечивающим подачу в цилиндр определенной дозы топлива. Преимуществом электронной системы впрыска является отсутствие отдельного привода от ДВС и то, что она может быть установлена на любом ДВС с минимальными переделками. Точное же дозирование топлива по отдельным цилиндрам на всех режимах работы ДВС с обеспечением необходимого согласования характеристик топливной системы ДВС и условий его эксплуатации помимо снижения токсичности ОГ уменьшает расход топлива на 8—9 %.

Обеднение топливовоздушной смеси. Снижению выбросов продуктов неполного сгорания топлива и повышению экономичности ДВС способствует также обеднение топливовоздушной смеси. Однако работа бензинового ДВС при коэффициенте избытка воздуха α> 1, 15 практически невозможна из-за возникновения пропусков воспламенения в отдельных цилиндрах. Полное сгорание бедных смесей даже при α> 1, 3 может быть обеспечено расслоением заряда, при котором воспламенение и начальная стадия процесса сгорания происходит в зоне обогащенной, а последующая осуществляется в зоне бедной смеси (форкамерно-факельное зажигание). Это препятствует образованию оксидов азота, поскольку в первой стадии сгорания недостаточно кислорода, а во второй относительно низкая температура горения. При расслоении заряда содержание оксида углерода в выбросах не превышает 0, 2 %, и концентрация углеводородов в них также понижается из-за меньшего содержания топлива в бедной смеси основной камеры. Непосредственный впрыск топлива выводит на новый уровень технологию работы двигателей на бедных смесях. В этом случае в цилиндр подается только воздух, а топливо впрыскивается под высоким давлением непосредственно в камеру сгорания. Вокруг свечи зажигания формируется облако готовой к воспламенению горючей смеси, что позволяет поднять воздухо-топливное соотношение выше, чем в традиционных двигателях. Поскольку в камере сгорания формируется смесь неодинаковой плотности, то это явление называют «расслоением» заряда. На самом деле на режимах полной нагрузки происходит переход к формированию гомогенной смеси нормального состава, но даже с учетом этого достигается снижение СО2 более чем на 30 % при увеличении мощности на 10 %. Необходимо отметить, что непосредственный впрыск топлива дополняется системой управляемого вихря и специальной формой днища поршня, что усиливает эффект расслоения заряда. Для обеспечения требуемого уровня выбросов NOx двигатели с непосредственным впрыском оборудуют специальными системами нейтрализации.

Одна из попыток решения проблемы экологической безопасности автомобильных двигателей предпринята фирмой Orbital Engine Company (ОЕС) применительно к двухтактному двигателю. В системе впрыска ОЕС топливо сначала поступает в смесительную камеру пневматической форсунки, установленной в камере сгорания сферической формы. Туда же под давлением 0, 5 МПа подается сжатый компрессором воздух. В начале такта сжатия воздух, поступающий в смесительную камеру форсунки, захватывает топливо и через распылитель переносит в камеру сгорания, обеспечивая, благодаря критической скорости истечения воздуха, молекулярный уровень распыления топлива. Сферическая форма камеры сгорания обеспечивает на частичных нагрузках глубокое расслоение заряда (до состава смеси от 25: 1 до 29: 1).

В двигателях фирмы Mazda (1, 5 л) для обеднения топливовоздушной смеси используются такие технические решения, как применение четырехклапанного газораспределительного механизма с системой формирования сложного управляемого вихря внутри камеры сгорания; системы распределенного высокодисперсного впрыска топлива; системы зажигания высокой энергии; микропроцессорного управления. В результате двигатель может работать на очень бедных смесях с воздухо-топливным соотношением 25: 1.

Изменение конструкции впускного трубопровода с подогревом воздуха на входе в карбюратор. Мощностные, экономические и экологические показатели ДВС зависят в определенной мере от конструкции впускного трубопровода, режима подогрева воздуха на входе в карбюратор и движущейся по этому трубопроводу топливовоздушной смеси, поскольку отклонения температуры и давления воздуха от средних значений, для которых подобрана регулировка карбюратора, приводят к увеличению расхода топлива и повышению выброса токсичных веществ с О Г. В связи с этим рекомендуется оснащать ДВС устройствами для регулируемого подогрева воздуха и топливовоздушной смеси. При этом на режимах частичных нагрузок ДВС следует поддерживать постоянную температуру воздуха 35—40 °С, а на полных нагрузках предусматривать подачу только холодного воздуха или частичную добавку подогретого воздуха. Интенсивный подогрев топливовоздушной смеси во впускных трубопроводах можно осуществить с помощью ОГ или использовать электрический подогреватель мощностью порядка 180 Вт. В последнем случае достигается достаточное уменьшение времени прогрева ДВС, а расход топлива при его пуске уменьшается на 30 %.

Перспективными техническими направлениями при разработке ДВС в части повышения их экологических качеств считаются: обеспечение вихревого движения заряда топливовоздушной смеси, ультразвуковое распыление топлива, интенсификация искрового разряда, применение электронной системы управления ДВС и наддув.

Вихревое движение заряда обеспечивается винтовым движением потока впускаемой рабочей смеси, которое из-за специально подобранной формы камеры сгорания сохраняется до момента подачи искры, обеспечивая активную газодинамическую подготовку заряда бедной топливовоздушной смеси к воспламенению и горению. Повышение стабильности сгорания при этом на 10—15 % позволяет снизить расход топлива и токсичность ОГ.

Интенсификация искрового разряда связана с применением электронных систем зажигания для ДВС, обладающих возможностью повышения энергии искрового разряда. При этом показатели топливной экономичности и токсичности ОГ здесь примерно такие, как у двигателей с форкамерно-факельным зажиганием, и в реальных эксплуатационных условиях использование повышенной энергии искрового разряда позволяет уменьшить расход топлива на 2—5 % и снизить выброс углеводородов с ОГ.

Электронные системы управления ДВС регулируют угол опережения зажигания, энергию искры и момент включения электромагнитного клапана экономайзера принудительного холостого хода карбюратора, что имеет место, например, на автомобилях ВАЗ. Управление системой осуществляется по трем параметрам — частоте вращения коленчатого вала, давлению за дроссельной заслонкой и температуре ДВС, для чего в системе имеются соответствующие датчики.

Наддув бензиновых ДВС обеспечивает более рациональную их загрузку на частичных нагрузках, уменьшает газодинамические потери и повышает топливную экономичность вследствие устойчивой работы на переобедненных смесях. Вместе с тем применение наддува здесь вызывает необходимость решения ряда проблем, поскольку повышение давления и температуры газов при сгорании топлива сопровождается увеличением выбросов оксидов азота, а также появлением опасности возникновения детонации и калильного зажигания. При этом в случае установки карбюратора после турбокомпрессора требуется герметизация карбюратора, повышение давления подачи топливным насосом и введение дополнительных устройств для регулирования состава горючей смеси, учитывающих давление и температуру подаваемого воздуха. При установке же карбюратора перед турбокомпрессором следует предотвратить попадание масла в карбюратор из системы смазки подшипников турбокомпрессора и возникновение явлений его неустойчивой работы (помпажа) на режимах глубокого дросселирования, а также возможность обратных «хлопков» во впускной системе. Однако эти трудности разрешимы, о чем свидетельствует опыт европейских, американских и японских фирм, освоивших серийный выпуск автомобилей, оснащенных бензиновым ДВС с турбонаддувом.

Практическая работа №3 Нетрадиционные конструкции ДВС

Бесшатунный поршневой двигатель

Традиционный кривошипно-шатунный механизм поршневых двигателей внутреннего сгорания при работе создает боковое усилие на стенку цилиндра. Чтобы предупредить связанный с этим повышенный износ поршней, приходится придавать им конусную форму, а их юбкам эллипсность. Кроме того, боковая нагрузка на стенку цилиндра увеличивает потери на трение, то есть приводит к уменьшению механического КПД двигателя. Исключить ее можно, применив такой механизм, в котором шатун двигался бы только возвратно-поступательно, не совершая угловых качаний относительно поршневого пальца. К реализации этой идеи приступил С. Баландин. Он предложил применить сначала для паровой машины, а затем поршневого авиационного двигателя «точное прямило» — механизм, давно известный в теории механизмов и машин.

Инженерное воплощение эти изобретения получили в опытном двигателе ОМБ, где были использованы цилиндры, их головки и поршни от пятицилиндрового авиационного мотора М—НА. По сравнению с ним звездообразный четырехцилиндровый бесшатунный двигатель мощнее на 33% и на 84% меньше в площади поперечного сечения. Но самый главный результат — благодаря сокращению потерь на трение между поршнем и цилиндром механический КПД повысился с 0,86 до 0,95, вырос моторесурс. С применением бесшатунного механизма цилиндро-поршневая группа перестала лимитировать надежность и долговечность мотора.

Последний из опытных бесшатунных двигателей С. Баландина, восьмицилиндровый ОМ—127РН двойного действия развивал мощность 3500 л. с. (2576 кВт). Он имел систему впрыска топлива и турбонаддув. Удельные параметры ОМ—127РН: мощность — 146 л. с/л, расход топлива при максимальной мощности — 200 г/л.с. в час, масса — 0,6 кг/л. с. Суммируя достоинства бесшатунного двигателя, можно отметить, что по сравнению с рядом поршневых двигателей внутреннего сгорания и газовыми турбинами он компактнее, менее металлоемок. Для изготовления многих его деталей пригодны действующие технология и оборудование моторостроительных производств в автомобильной промышленности.

Двигатель Кушуля

Конструктивные особенности двигателя Кушуля

 

В отличие от классического ДВС, в этом двигателе каждая пара цилиндров сообщается при помощи узкого косонаправленного канала, снабженного мощным клапаном. Во время работы в первый из парных цилиндров поступает обыкновенная топливо-воздушная смесь, а во второй – чистый воздух. Клапан при этом закрыт, а поршни находятся в нижнем положении. Вверх они движутся неравномерно – тот, в котором находится топливо, опережает второй на 40° по углу вращения кривошипа.

Когда в первом цилиндре топливо воспламеняется, он останавливается и под действием газов поршень начинает движение вниз. Поршень второго цилиндра в это время продолжает двигаться вверх, сжимая воздух. При достижении критической отметки клапан открывается и воздух поступает в первый цилиндр. Топливо-воздушная смесь обогащается кислородом, что приводит к усилению реакции горения. Этому же способствуют и завихрения воздуха, создаваемые перемещением газов между цилиндрами.

Увеличение объема кислорода позволяет «дожечь» все несгоревшие компоненты топлива и создать тем самым увеличенный объем газов. Часть из них по тому же каналу переходит во второй цилиндр, в результате чего оба поршня начинают асинхронное движение вниз. В нижней мертвой точке происходит выпуск отработанных газов – аналогично тому, как это осуществляется в ДВС классической конструкции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]