
- •Глава 1
- •1.1. Основные понятия
- •1.2. Требования к зданиям как к объектам реконструкции
- •Глава 2
- •2.1. Задачи обследований
- •2.2. Методы обследований состояния зданий и их конструкций
- •2.2.1. Состав работ, выполняемых при обследовании подземных конструкций
- •2.2.2. Состав работ, выполняемых при обследовании наземных конструкций
- •2.3. Оборудования и инструменты для обследования здания
- •2.3.1. Приборы для линейных измерений
- •2.3.2. Клинометры
- •2.3.3. Механические тензометры
- •2.3.4. Сдвигомеры
- •2.3.5. Неразрушлющие методы испытаний
- •5.2. Методы проникающих сред
- •5.3. Механические методы испытаний
- •6. Оценка прочности металла
- •7. Оценка прочности бетона
- •8. Оценка прочности древесины
- •9. Акустические методы
- •9.1. Ультразвуковые методы
- •9.2. Область применения ультразвуковых методов
- •9.3. Импульсные звуковые методы
- •10. Магнитные, электрические и электромагнитные методы
- •10.1. Дефектоскопия металла
- •10.2. Магнитные толщиномеры
- •10.3. Определение напряжений с помощью магнитоупругого тестера
- •10.4. Приборы магнитно-индукционного типа
- •10.5. Определение влажности древесины
- •11. Методы, основанные на использовании ионизирующего илучения
- •11.1 Область применения рентгеновского и гамма-излучений
- •12. Приборы неразрутающего контроля нового поколения
- •12.1. Влагомер универсальный вимс-1
- •12.2. Многоканальный терморегистратор терем-2.Х
- •12.3. Измеритель теплопроводности итп-мг4
- •12.4. Измеритель прочности бетона оникс-2.3
- •12.5. Прибор универсальный ультразвуковой пульсар-1.0
- •12.6. Дефектоскоп вихретоковыи вдл-5м
- •12.7. Измеритель защитного слоя бетона поиск-2.3
- •12.8. Толщиномер ультразвуковой ут-93п
- •12.9. Виброметр строительный вист-2
- •12.10. Измерители механических напряжений и колебаний инк -2, инк-2к
- •12.11. Измеритель активности цемента ипц-мг4
- •Технические характеристики
- •Глава 3
- •3.1. Инженерные изыскания площадки
- •3.2. Оценка стойкости бетона к воздействиям
- •3.3. Установление фактических динамических
- •Глава 4
- •4.1. Проектирование усиления железобетонных и каменных конструкций
- •4.1.2. Усиление фундаментов
- •Усиление оснований фундаментов
- •4.1.4. Улучшение и усиление каменных конструкций
- •4.1.5. Усиление балок и прогонов
- •4.1.6. Усиление колонн и консолей
- •3.1.7. Усиление плит перекрытий и покрытий
- •4.1.8. Усиление стыков
- •4.2. Усиление металлических и деревянных конструкций
- •4.2.1. Методы усиления металлических конструкций
- •4.2.2. Принципы усиления деревянных конструкций
- •4.3. Монтаж и демонтаж конструктивных элементов зданий и сооружений
- •4.3.1. Технология монтажно-демонтажных работ
- •4.3.2. Порядок разборки конструкций различных типов
- •4.3.3. Разборка крыш
- •4.3.4. Разборка перекрытий
- •4.3.5. Разборка кирпичных стен и сводов
- •4.3.6. Разборка лестниц
- •4.3.7. Разборка перегородок
- •4.3.8. Особенности использования монтажных средств
- •4.4 Пристройки, перемещение и надстройки зданий
- •4.4.1. Надстройка жилых и общественных зданий
- •4.4.2. Пристройки, вставки, встройки зданий
- •4.4.3. Передвижка и подъем зданий
2.3.2. Клинометры
Углы наклона элементов, подлежащие определению при испытаниях в пределах расчетных нагрузок, как правило, не велики. В большинстве случаев приходится учитывать доли градуса и минуты, а при испытаниях особо жестких железобетонных конструкций - и секунды. Приборы и приспособления, применяемые для измерения столь малых углов, должны обладать высокой чувствительностью.
При загружениях за пределами расчетных нагрузок, и в особенности при приближении к стадии разрушения, угловые перемещения начинают резко возрастать, и для определения их оказываются более целесообразны геодезические методы и фотосъемка.
Ниже рассмотрим основные типы клинометров и приспособлений для измерения малых угловых перемещений.
Способ жесткого рычага
К наблюдаемому сечению крепится металлическая консоль (рис. 2.1). Линейные перемещения двух точек консоли, обусловленные наклоном сечения, измеряют с помощью прогибомеров. Зная разность перемещений на базе В, определяем угол наклона а. 1
Рис.2.1. Измерение угла наклона при помощи жесткой консоли:
1- испытываемый элемент; 2-жесткая консоль; 3-соединительная проволока; 4 и 5-прогибомеры; 6-неподвижные опоры для крепления прогибомеров; аı и а₂-линейные перемещения, измеренные прогибомерами.
Клинометр с уровнем
Кинематическая схема их показана на рис. 2.2. Высокочувствительный уровень 2 приводится в горизонтальное положение вращением микрометре иного винта 3. Отсчеты берутся по шкале барабана 4 микрометре иного винта. Разность отсчетов при положениях, показанных на рис. 2.2, дает значение искомого угла а.
Рис. 2.2. Клинометры с уровнем:
1 - исследуемая конструкция; 2 - высокоточный уровень; 3 - микрометренный винт; 4 - барабан микрометре иного винта со шкалой; 5 - шарнирная опора.
Клинометры с отвесом - маятником
Схема прибора показана на рис. 2.3. Отвес 2 опирается при помощи призмы 3 на опору, расположенную внутри корпуса 4 клинометра. Положение отвеса фиксируется микрометренным винтом 5. Отсчеты берутся по шкале 6 барабана винта с ценой деления в 5". Разность отсчетов, соответствующих положениям рис. 2.3, а и б, дает определяемый угол наклона а.
Во избежание смещения отвеса микрометренным винтом контакт их отмечается электросигналом (при соприкосновении острия винта 5 с отвесом 2 замыкается слаботочная электрическая цепь).
Рис. 2.3. Клинометр с отвесом-маятником:
1 - исследуемая конструкция; 2 - отвес; 3 - опорная призма; 4 - корпус прибора;
5 - микрометренный винт; 6 - барабан
Рассмотренный прибор не требует связи с каким либо репером, что является (в особенности при длительных наблюдениях) серьезным преимуществом представленного клинометра по сравнению с другими.
Оптический клинометр
К наблюдаемой точке прикрепляется небольшое зеркальце (отсюда и другое название - «зеркальный способ»)- Зеркало 1 (рис. 2.4) ориентируется так, чтобы с помощью зрительной трубы 2 (обычно, геодезического инструмента) мог быть сделан отсчет по шкале 3 измерительной рейки, расположенной рядом с инструментом.
При изменении наклона исследуемого элемента на угол а зеркальце проворачивается вместе с ним на тот же угол, что сопровождается поворотом «оптического рычага» СВ на угол 2а.
Зная расстояние L между рейкой и зеркальцем и изменение а отсчетов по рейке, находим значение а из соотношения
Для облегчения ориентировки зеркало шарнирно крепится к установочной струбцине так, чтобы оно могло проворачиваться вокруг двух взаимно перпендикулярных осей Ι и ΙΙ.
Применение зеркального способа особенно целесообразно при наблюдении за отдаленными точками сооружения, трудно доступными во время испытания. Другая область применения - наблюдения за изменением углов наклона весьма гибких элементов (например, на моделях), где исключена установка сравнительно тяжелых клинометров или крепление консолей с прогибомерами.
Рис.2.4. Схема измерения углов наклона с помощью оптического клиномера: 1-зеркало в положении до деформации и 1'-после деформации; 2-зрительная труба; 3- шкала зрительной рейки; а-АВ-разность отсчетов по рейки до и после деформации.