
1.4.2 Методы решений систем линейных уравнений
1. Метод Крамера (формулы Крамера) — способ решения систем линейных уравнений, у которых количество переменных равно количеству уравнений. Применение метода Крамера возможно, если определитель, составленный из коэффициентов при переменных, не равен нулю. В таком случае система имеет единственное решение. Метод создан Габриэлем Крамером в 1751 году и основан на теореме Крамера:
Система n уравнений с n неизвестными, определитель которой отличен от нуля, всегда имеет решение и притом единственное. Оно находится следующим образом: значение каждого из неизвестных равно дроби, знаменателем которой является определитель системы, а числитель получается из определителя системы заменой столбца коэффициентов при искомом неизвестном на столбец свободных членов.
Пусть дана система п уравнений с п неизвестными. Найдем определитель этой системы и так называемые вспомогательные определители (их количество равно количеству неизвестных системы).
Пусть дана система п уравнений с п неизвестными. Найдем определитель этой системы и так называемые вспомогательные определители (их количество равно количеству неизвестных системы).
По формулам Крамера находим неивестные системы:
2. Метод Гаусса (метод последовательного исключения переменных)
Этот метод решения систем линейных уравнений пригоден для решения систем с любым числом уравнений и неизвестных.
Суть метода Гаусса заключается в преобразовании заданной системы уравнений с помощью элементарных преобразований в эквивалентную систему ступенчатого треугольного вида (прямой ход).
Полученная система содержит все неизвестные в первом уравнении. Во втором уравнении отсутствует первое неизвестное, в третьем уравнении отсутствуют первое и второе неизвестные и т. д.
Второй этап (обратный ход) заключается в решении ступенчатой системы. Ступенчатая система уравнений, вообще говоря, имеет бесчисленное множество решений, В последнем уравнении этой системы выражаем первое неизвестное xk через остальные неизвестные (xk+1,…,xn). Затем подставляем значение xk в предпоследнее уравнение системы и выражаем xk-1 через (xk+1,…,xn). , затем находим xk-2,…,x1.. Придавая свободным неизвестным (xk+1,…,xn). произвольные значения, получим бесчисленное множество решений системы.
Если система совместна и определена (единственное решение), то последнее уравнение содержит одно неизвестное. Найдя последнее неизвестное, из предыдущего уравнения находим еще одно - предпоследнее. Подставляя полученные величины неизвестных, мы последовательно найдем решение системы.
Замечания:
1. Если ступенчатая система оказывается треугольной, т. е. k=n, то исходная система имеет единственное решение. Из последнего уравнения находим xn из предпоследнего уравнения xn-1, далее поднимаясь по системе вверх, найдем все остальные неизвестные (xn-1,...,x1).
2. На практике удобнее работать не с системой, а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a111).