
- •Экономические науки
- •Э конометрика
- •1. Вероятность и случайная величина
- •1.1. Основные понятия теории вероятностей.
- •1.2. Случайная величина.
- •1.3. Вероятностные характеристики случайной величины.
- •1.1. Основные понятия теории вероятностей
- •1.1.1. Классический подход вероятности
- •Общее число возможных результатов
- •1.1.2. Эмпирический подход
- •1.1.3. Субъективный подход (интуитивный)
- •1.2. Случайная величина
- •1.2.1. Дискретные и непрерывные случайные величины
- •1.3. Вероятностные характеристики случайной величины
- •1.3.2. Примеры законов распределения
- •1.3.3. Математическое ожидание
- •1.3.4. Дисперсия случайной величины
- •1.3.5. Многомерное распределение вероятности
- •2. Элементы математической статистики
- •2.1. Предмет и основные понятия математической статистики
- •2.2. Оценивание «Хорошие» свойства оценок
- •2.3. Проверка гипотез и интервальное оценивание
- •2.1. Предмет и основные понятия математической статистики
- •2.2. Оценивание «Хорошие» свойства оценок
- •Описательный статистический анализ
- •С татистический анализ
- •Описательный вид цель - выводы
- •Оценивание проверка гипотез
- •2.3. Проверка гипотез и интервальное оценивание
- •Проверка гипотез методом определения уровня вероятности.
- •Интервальное оценивание.
- •3. Однофакторные регрессионные уравнения
- •Понятие регрессионных уравнений
- •Метод наименьших квадратов
- •Проверка адекватности регрессионных уравнений
- •Показатели качества подгонки регрессионных уравнений
- •Проверка различных гипотез относительно регрессионных уравнений
- •«Хорошие» свойства оценок
- •3.1. Понятие регрессионных уравнений
- •3.2. Метод наименьших квадратов
- •3.3. Проверка адекватности регрессионных уравнений
- •3.3.1. Показатели качества подгонки регрессионного уравнения
- •Различные гипотезы относительно параметров регрессионного уравнения
- •3.3.3. Проверка выполнения условий для получения «хороших» оценок мнк
- •4. Многофакторное регрессионное уравнение (мру)
- •4.1. Необходимость использования многофакторных регрессионных уравнений (мру)
- •4.2. Оценка коэффициентов регрессии и условия применения метода наименьших квадратов (мнк) Параметры уравнения множественной регрессии оцениваются методом наименьших квадратов по формуле:
- •4.3. Показатели адекватности
- •4.4. Отбор существенных факторов
- •4.5. Нелинейные регрессионные модели (нрм).
- •4.6. Использование регрессионных моделей для прогнозирования.
- •4.7. Этапы построений регрессионных уравнений
- •Определение «входов» и «выходов» модели.
- •Сбор исходных статистических данных.
- •Установление наличия статистической связи между переменными.
- •Выбор математической формулы регрессионного уравнения.
- •Оценка коэффициентов регрессионного уравнения.
- •Оценка качества подгонки регрессионного уравнения.
- •Оценка стандартных ошибок и t- статистика для коэффициентов регрессии.
- •Проверка условий метода наименьших квадратов (мнк) для получения «хороших» оценок.
- •Экспериментальная проверка моделей.
- •Вывод об адекватности модели.
- •Эксплуатация моделей.
- •5. Прогнозирование на основе одномерного динамического ряда (др)
- •5.1. Строго периодические колебания (Vt)
- •V продаж
- •5.2. Тренд и нестрого периодические циклические колебания (Ut и Kt)
- •6. Три основных класса экономико-математических моделей применяемых для анализа и прогнозирования
- •1 Класс:
- •2 Класс:
- •3 Класс:
- •6.1. Структурная форма модели
- •6.2. Приведенная форма модели
- •6.3. Проблема идентификации
- •Дисперсионный анализ
6.2. Приведенная форма модели
Приведенная форма модели представляет собой систему линейных функций эндогенных переменных от экзогенных:
где
(
),(
)–
коэффициенты приведенной формы модели.
По своему виду приведенная форма модели ничем не отличается от системы независимых уравнений, параметры которой оцениваются традиционным МНК. Применяя МНК, можно оценить , а за тем оценить значения переменных через экзогенные переменные.
Коэффициенты
приведенной формы модели представляют
собой нелинейные
функции коэффициентов структурной
формы модели.
Рассмотрим это положение на примере
простейшей структурной модели, выразив
коэффициенты приведенной формы модели
(
)
через коэффициенты структурной модели
(аj
и bi).
Для упрощения в модель не введены
случайные переменные. Для структурной
модели вида
Приведенная форма
модели имеет вид
В которой у2 из первого уравнения структурной модели можно выразить следующим образом:
Тогда система одновременных уравнений будет представлена как
Отсюда имеем равенство:
или
Тогда
или
Таким образом, мы
представили первое уравнение структурной
формы модели в виде уравнения приведенной
формы модели:
Из уравнения следует, что коэффициенты приведенной формы модели представляют собой нелинейные соотношения коэффициентов структурной формы модели, т.е.
Аналогично можно показать, что коэффициенты приведенной формы модели второго уравнения системы (δ21, δ22) также нелинейно связаны с коэффициентами структурной модели. Для этого выразим переменную у1 из второго структурного уравнения модели как
Запишем это выражение у1 в левой части первого уравнения структурной формы модели
Отсюда
,
что соответствует уравнению приведенной
формы модели:
т.е.
Экономические модели обычно включают в систему не только уравнения, отражающие взаимосвязи между отдельными переменными, но и выражения тенденции развития явления, а также разного рода тождества. Так, в 1947 г., исследуя линейную зависимость потребления (с) от дохода (у), Т.Хавельмо предложил одновременно учитывать тождество дохода. В этом случае модель имеет вид:
где х – инвестиции в основной капитал и в запасы экспорта и импорта;
a и b – параметры линейной зависимости с от у.
Их оценки должны учитывать тождество дохода в отличие от параметров обычной линейной регрессии.
В этой модели две эндогенные переменные - с и у и одна экзогенная переменная х. Система приведенных уравнений составит:
Она позволяет получить значения эндогенной переменной с через переменную х. Рассчитав коэффициенты приведенной формы модели (А0, А1, В0, В1), можно перейти к коэффициентам структурной модели a и b, подставляя в первое уравнение приведенной формы модели.
Приведенная форма модели, хотя и позволяет получить значения эндогенной переменной через значения экзогенных переменных, аналитически уступает структурной форме модели, так как в ней отсутствуют оценки взаимосвязи между эндогенными переменными.