
- •Часть 2. Современные философские проблемы астрономии и механики
- •Место астрономии в системе наук и в духовной культуре человечества. История астрономии
- •Задачи астрономии
- •Структура современной астрономии
- •Взаимосвязь с другими дисциплинами Науки, используемые астрономией
- •Использование достижений астрономии в других науках
- •Научная революция xyi- xyii веков и ее философское значение. По идее здесь должно быть кратко про Коперника, Галилея, Ньютона, Лейбница, Бэкона.
- •Механика[править | править исходный текст]
- •Эволюционные концепции в астрономии и космологии. В билетах: Появление эволюционных идей в астрономии
- •Моделирование в астрономии, космологии и механике. 34: Причины широкого распространения моделирования
- •«Принцип Маха» в механике и его значение для космологии.
- •Интерпретация принципа Маха
- •Принцип Маха и Теория Относительности.
- •Принцип Маха и современная физика
- •Субстанциональная концепция
- •Реляционная концепция.
- •Концепция Канта
- •Пространство и время в современной физике.
- •Проблема реальной делимости пространства и времени
- •Вопрос о направленности течения времени.
Научная революция xyi- xyii веков и ее философское значение. По идее здесь должно быть кратко про Коперника, Галилея, Ньютона, Лейбница, Бэкона.
Отправной точкой научной революции, в результате которой появилась классическая наука и современное естествознание, стал выход книги Николая Коперника “О вращении небесных сфер” в 1543 г. Отсюда началось освобождение естествознания от теологии.
В последней трети XVI – начале XVII в. происходит буржуазная революция в Нидерландах, сыгравшая важную роль в развитии капиталистических отношений в протестантских странах. С середины XVII в. (1642—1688) буржуазная революция развертывается в Англии, наиболее развитой в промышленном отношении европейской стране. Эти ранние буржуазные революции были подготовлены развитием мануфактурного производства, пришедшего на смену ремесленному труду. Переход к мануфактуре способствовал быстрому росту производительности труда, поскольку мануфактура базировалась на кооперации работников, каждый из которых выполнял отдельную функцию в расчлененном на мелкие частичные операции процессе производства. Развитие нового – буржуазного – общества порождает изменения не только в экономике, политике и социальных отношениях, оно меняет и сознание людей. Важнейшим фактором такого изменения обшественного сознания оказывается наука, и прежде всего экспериментально-математическое естествознание, которое как раз в XVII в. переживает период своего становления: не случайно XVII век обычно называют эпохой научной революции.
В
XVII в. разделение труда в производстве
вызывает потребность в рационализации
производственных процессов, а тем самым
– в развитии науки, которая могла бы
эту рационализацию стимулировать.
Развитие науки Нового времени, как и социальные преобразования, связанные с разложением феодальных общественных порядков и ослаблением влияния церкви, вызвало к жизни новую ориентацию философии. Если в Средние века она выступала в союзе с богословием, а в эпоху Возрождения – с искусством и гуманитарным знанием, то теперь она опирается главным образом на науку.
Поэтому для понимания проблем, которые стояли перед философией XVII в., надо учитывать, во-первых, специфику нового типа науки – экспериментально-математического естествознания, основы которого закладываются в этот период. И во-вторых, поскольку наука занимает ведущее место в мировоззрении этой эпохи, то и в философии на первый план выходят проблемы теории познания – гносеологии.
Уже в эпоху Возрождения, как мы видели, средневековая схоластическая образованность была одним из предметов постоянной критики. Эта критика еще более остро ведется в XVII в. Однако при этом, хотя и в новой форме, продолжается старая, идущая еще от Средних веков полемика между двумя направлениями в философии: номиналистическим, опирающимся на опыт, и рационалистическим, выдвигающим в качестве наиболее достоверного познание с помощью разума. Эти два направления в XVII в. предстают как эмпиризм и рационализм.
Теория Коперника об обращении Земли вокруг Солнца и о суточном вращении Земли вокруг своей оси означала разрыв с геоцентрической системой Птоломея и основанными на ней религиозными представлениями о Земле как избраннице божьей и о привилегированном положении человека во вселенной. Эта теория отбросила также идущее от Аристотеля и использованное схоластикой противопоставление небесных и земных движении, нанесла удар церковной легенде о сотворении мира богом. Но гелиоцентрические идеи, высказанные Коперником, были всего лишь гипотезой, нуждавшейся в доказательстве. Поиск аргументов в пользу этой гипотезы и стал основной задачей научной революции XVI-XVII вв., которая начинается с работ Г. Галилея.
Главным достижением Галилея в механике было установление закона инерции, принципа относительности, согласно которому равномерное и прямолинейное движение системы тел не отражается на процессах, происходящих в этой системе. Важнейшее значение в борьбе с религиозными догмами имели астрономические открытия Галилея, послужившие важными аргументами в пользу истинности гелиоцентрической системы Коперника. Г. Галилей представлял не только астрономические, но и механические доводы в пользу учения Коперника.
Прогрессивным для того времени было и мировоззрение Галилея. Он считал, что мир бесконечен, материя вечна, природа едина. В основе природы лежит строгая механическая причинность абсолютно неизменных атомов, подчиняющихся законам механики.
Галилей сформулировал принцип инерции: любое тело сохраняет состояние покоя или равномерного или прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет его из этого состояния. Он положил конец многовековому заблуждению, идущему от Аристотеля, о том, что для поддержания равномерного движения необходима постоянная сила.
Исходным пунктом познания природы является наблюдение, опыт. Познание внутренней необходимости явлений есть, согласно Галилею, высшая ступень знания. Галилей был одним из основоположников опытного естествознания. Ему принадлежит экспериментальное обнаружение весомости воздуха, открытие законов колебания маятника, немалый вклад в разработку учения о сопротивлении материалов.
Однако Галилей не избавился от религиозных предрассудков, признавал божественный первотолчок. Основной труд - “Диалог о двух главнейших системах мира - птолемеевой и коперниковой” (1632).
В науке XVII века наряду с опытно-экспериментальными исследованиями, активно развиваются математические формализованные методики, что приводит к появлению алгебры, созданию дифференциального и интегрального исчислений, аналитической геометрии. Опытно-экспериментальное и математическое направления в научном исследовании возникли еще в эпоху Возрождения, однако в новое время они все более объединяются в одном экспериментально-математическом методе познания. Ведущей отраслью знания становится механика — наука о движении тел, сыгравшая огромное методологическое значение в формировании философско-мировоззрен-ческих взглядов XVII века. Связь философии с порождающей ее социальной средой не была опосредована только лишь через различные формы естествознания. Значительной оставалась роль религиозного мировоззрения, являющегося официальной государственной идеологией. Кроме того, ограниченность механистического мировоззрения нередко вынуждала передовых мыслителей XVII века обращаться к божественному всемогуществу, «первотолчку», «мировому разуму» и т.д., что характерно для научного творчества Г.Галилея, Р. Декарта, И. Ньютона, Т. Гоббса и многих других. В силу этого соотношение материализма и идеализма, теизма и атеизма в рассматриваемый период не носит характера жесткой взаимоисключающей альтернативы «или ... или». «Двухмерное» видение проблемы не позволяет познать многообразие живого реального процесса становления научного познания. Философские воззрения, пытающиеся согласовать новую естественнонаучную картину мира с гипотезой о существовании трансцендентной, внеприродной личности творца получили название — деизм. Как и в эпоху Возрождения, большое распространение имела концепция «двух истин» — «божественной» и «природной». В средневековой философии она проявлялась как противостояние номинализма и реализма. В рассматриваемый период с новой силой развернулась полемика о том, что является основой подлинного знания — разум или опыт. В новое время эти два направления принимают форму эмпиризма и рационализма. Таким образом, в XVII в. в Европе появляется новая философия, опирающаяся на идеи самоценности разума, с одной стороны, и осознание важности целенаправпенного экспериментально-опытного изучения мира — с другой.
Механицизм как философия естествознания XYII- XIXвв.
Механицизм является односторонним методом познания, основанный на признании механической формы движения материи единственно объективной.
В своем конкретном применении механицизм выступает, как крайняя форма редукционизма. Для механицизма характерно: отрицание качественной специфики более сложных материальных образований, сведение сложного к простым элементам, целого – к сумме его частей. Выдвигая на первый план механические формы движения, механицизм переносит понятие механики в область физики, химии и биологии, в результате чего “неизбежна путаница”, и в духе механики трактует такие филосовские категории, как причинность, взаимосвязь и другие.
Отдельные черты механицизма встречаются уже в античном атомизме и в средних веках номинализма. В 16 - 18 вв. механицизм приобрел значение господствующего направления философского мышлении о природе, что было обусловлено особым положением в этот период механики, как науки, ранее других получившей законченную систематическую разработку и широкое практическое применение. Механицизм нашел распространение в мировоззрении естествоиспытателей (Галилей, Ньютон, Лаплас), философов - материалистов (Гоббс, Ламетри, Гольбах), а также среди идеалистов (сочетаясь с различными типами идеалистических систем). Так, Декарт выделяя “душу” в качестве отличия человека от остального мира (не имеющего в себе источника движения), приравнивал любые другие организмы к искусным механическим автоматам. Вольф полагал, что познание истины возможно потому, что “мир есть машина”. Кант признавал гипотезу о единственности механической связи, как необходимой предпосылки естественно научного исследования. Типичными представителями механицизма в 19 в. были Бюхнер, Фохт, Молешотт, Дюринг.
Будучи одним из основных направлений метафизического способа мышления, механицизм не способен учесть реальной диалектической сложности движения и строения материального мира. Механицизм (как философская позиция) обусловил мировоззренческий кризис в 19 в. в ряде отрослей естествознания и связанных с ними областях философии, так новое открытие, радикально преобразовавшее естественно научное познание и углубившее его основы, требовали диалектического осмысления. В этот период механицизм привел многих естествоиспытателей к агностицизму, витализму и идеализму.
Для естествознания 20 в. характерно преодоление механицизма, связанное с освоением диалектического метода познания.
Развитие представлений о природе гравитации в естествознании Нового времени. Ньютон решительно отверг популярный в конце XVII века подход Декарта и его последователей-картезианцев, который предписывал при построении научной теории вначале «проницательностью ума» найти «первопричины» исследуемого явления. На практике этот подход часто приводил к выдвижению надуманных гипотез о «субстанциях» и «скрытых свойствах», не поддающихся опытной проверке. Ньютон считал, что в «натуральной философии» (то есть физике) допустимы только такие предположения («принципы», сейчас предпочитают название «законы природы»), которые прямо вытекают из надёжных экспериментов, обобщают их результаты; гипотезами же он называл предположения, недостаточно обоснованные опытами. «Всё…, что не выводится из явлений, должно называться гипотезою; гипотезам же метафизическим, физическим, механическим, скрытым свойствам не место в экспериментальной философии»[28]. Примерами принципов служат закон тяготения и 3 закона механики в «Началах»; слово «принципы» (Principia Mathematica, традиционно переводимое как «математические начала») содержится и в названии его главной книги.
В письме к Пардизу Ньютон сформулировал «золотое правило науки»[85]:
Лучшим и наиболее безопасным методом философствования, как мне кажется, должно быть сначала прилежное исследование свойств вещей и установление этих свойств с помощью экспериментов, а затем постепенное продвижение к гипотезам, объясняющим эти свойства. Гипотезы могут быть полезны лишь при объяснении свойств вещей, но нет необходимости взваливать на них обязанности определять эти свойства вне пределов, выявленных экспериментом… ведь можно изобрести множество гипотез, объясняющих любые новые трудности.
Начиная с Ньютона, естествознание развивается, твёрдо уверенное в том, что мир познаваем, потому что природа устроена по простым математическим принципам[89]. Эта уверенность стала философской базой для грандиозного прогресса науки и технологии.
Галилео Галилей и создание классической механики. Галилей по праву считается основателем не только экспериментальной, но — в значительной мере — и теоретической физики. В своём научном методе он осознанно сочетал продуманный эксперимент с его рациональным осмыслением и обобщением, и лично дал впечатляющие примеры таких исследований. Иногда из-за недостатка научных данных Галилей ошибался (например, в вопросах о форме планетных орбит, природе комет или причинах приливов), но в подавляющем большинстве случаев его метод приводил к цели. Характерно, что Кеплер, располагавший более полными и точными данными, чем Галилей, сделал правильные выводы в тех случаях, когда Галилей ошибался.
Хотя в древней Греции были замечательные инженеры (Архимед, Герон и другие), сама идея экспериментального метода познания, который должен дополнять и подтверждать дедуктивно-умозрительные построения, была чужда аристократическому духу античной физики. В Европе ещё в XIII веке Роберт Гроссетест и Роджер Бэкон призвали к созданию экспериментальной науки, которая на математическом языке сможет описать природные явления, однако до Галилея в реализации этой идеи не было существенного продвижения: научные методы мало отличались от теологических, и ответы на научные вопросы по-прежнему искали в книгах древних авторитетов[66]. Научная революция в физике начинается с Галилея[67].
В отношении философии природы Галилей был убеждённым рационалистом. Он считал, что законы природы постижимы для человеческого разума. В «Диалоге о двух системах мира» он писал[68]:
Я утверждаю, что человеческий разум познаёт некоторые истины столь совершенно и с такой абсолютной достоверностью, какую имеет сама природа; таковы чистые математические науки, геометрия и арифметика; хотя Божественный разум знает в них бесконечно больше истин… но в тех немногих, которые постиг человеческий разум, я думаю, его познание по объективной достоверности равно Божественному, ибо оно приходит к пониманию их необходимости, а высшей степени достоверности не существует.
Разум у Галилея — сам себе судья; в случае конфликта с любым другим авторитетом, даже религиозным, он не должен уступать:
Мне кажется, что при обсуждении естественных проблем мы должны отправляться не от авторитета текстов Священного Писания, а от чувственных опытов и необходимых доказательств… Я полагаю, что всё касающееся действий природы, что доступно нашим глазам или может быть уяснено путём логических доказательств, не должно возбуждать сомнений, ни тем более подвергаться осуждению на основании текстов Священного Писания, может быть, даже превратно понятых[69]. Бог не менее открывается нам в явлениях природы, нежели в речениях Священного Писания… Было бы опасно приписывать Священному Писанию какое-либо суждение, хотя бы один раз оспоренное опытом[70].
Античные и средневековые философы предлагали для объяснения явлений природы разнообразные «метафизические сущности» (субстанции), которым приписывались надуманные свойства. Галилея такой подход не устраивал[71]:
Поиск сущности я считаю занятием суетным и невозможным, а затраченные усилия — в равной мере тщетными как в случае с удалёнными небесными субстанциями, так и с ближайшими и элементарными; и мне кажется, что одинаково неведомы как субстанция Луны, так и Земли, как пятен на Солнце, так и обыкновенных облаков… [Но] если тщетно искать субстанцию солнечных пятен, это ещё не значит, что нами не могут быть исследованы некоторые их характеристики, например место, движение, форма, величина, непрозрачность, способность к изменениям, их образование и исчезновение.
Декарт отверг такую позицию (в его физике основное внимание уделялось именно нахождению «главных причин»), однако начиная с Ньютона галилеевский подход становится преобладающим.
Галилей считается одним из основателей механицизма. Этот научный подход рассматривает Вселенную как гигантский механизм, а сложные природные процессы — как комбинации простейших причин, главная из которых — механическое движение. Анализ механического движения лежит в основе работ Галилея. Он писал в «Пробирных дел мастере»[72]:
Никогда я не стану от внешних тел требовать чего-либо иного, чем величина, фигура, количество, и более или менее быстрые движения для того, чтобы объяснить возникновение ощущений вкуса, запаха и звука; я думаю, что если бы мы устранили уши, языки, носы, то остались бы только фигуры, числа, движения, но не запахи, вкусы и звуки, которые, по моему мнению, вне живого существа являются не чем иным, как только пустыми именами.
Для проектирования эксперимента и для осмысления его результатов нужна некоторая предварительная теоретическая модель исследуемого явления, и основой её Галилей считал математику, выводы которой он рассматривал как самое достоверное знание: книга природы «написана на языке математики»[73]; «Тот, кто хочет решать вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является.»[74]
Опыт Галилей рассматривал не как простое наблюдение, а как осмысленный и продуманный вопрос, заданный природе. Он допускал и мысленные эксперименты, если их результаты не вызывают сомнений. При этом он ясно представлял, что сам по себе опыт не даёт достоверного знания, и полученный от природы ответ должен подвергнуться анализу, результат которого может привести к переделке исходной модели или даже к замене её на другую. Таким образом, эффективный путь познания, по мнению Галилея, состоит в сочетании синтетического (в его терминологии, композитивный метод) и аналитического (резолютивный метод), чувственного и абстрактного[75]. Эта позиция, поддержанная Декартом, с этого момента утвердилась в науке. Тем самым наука получила свой метод, собственный критерий истины и светский характер.