Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Философия КР.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
376.32 Кб
Скачать

Модели движения в античной натурфилософии[править | править исходный текст]

В V веке до н. э. древнегреческая математика достигла высокой ступени развития, и пифагорейская школавыражала уверенность, что математические закономерности лежат в основе всех законов природы. В частности, математическая модель движения в природе была создана на основе геометрии, которая к этому времени уже была достаточно глубоко разработана. Геометрия пифагорейцев опиралась на рядидеализированных понятий: тело, поверхность, фигура, линия — и самым идеализированным было фундаментальное понятие точки пространства, не имеющей никаких собственных измеримых характеристик[13]. Тем самым любая классическая кривая считалась одновременно и непрерывной, и состоящей из бесконечного количества отдельных точек. В математике это противоречие не вызывало проблем, но применение этой схемы к реальному движению поставило вопрос, насколько правомерен такой внутренне противоречивый подход[14]. Первым проблему ясно сформулировал Зенон Элейский в серии своих парадоксов (апорий).

Апории и вообще взгляды Зенона нам известны только в кратком пересказе других античных философов, которые жили столетия спустя и хотя высоко ценили Зенона как «основателя диалектики», но чаще всего были его идейными противниками. Поэтому трудно достоверно выяснить, как формулировал апории сам Зенон, что он хотел показать или опровергнуть[15]. По мнению большинства комментаторов, их цель — показать, что наше (математическое) представление о движении противоречиво[7][5]. Эта точка зрения подтверждается тем, что элеатов в древности называли афизиками, то есть противниками науки о природе[15].

В двух апориях (Ахиллес и Дихотомия) предполагается, что время и пространство непрерывны и неограниченно делимы; Зенон показывает, что это допущение приводит к логическим трудностям. Третья апория («Стрела»), напротив, рассматривает время как дискретное, составленное из точек-моментов; в этом случае, как показал Зенон, возникают другие трудности[12]. Отметим, что неправильно утверждать, будто Зенон считал движение несуществующим, потому что, согласно элейской философии, доказать несуществование чего бы то ни было невозможно: «несуществующее немыслимо и невыразимо»[16]. Цель аргументации Зенона была более узкой: выявить противоречия в позиции оппонента.

Часто в число апорий движения включают «Стадион» (см. ниже), но по тематике этот парадокс скорее относятся к апориям бесконечности. Далее содержание апорий пересказывается с использованием современной терминологии.

Под влиянием возникших философских споров сформировались два взгляда на строение материи и пространства: первый утверждал их бесконечную делимость, а второй — существование неделимых частиц, «атомов». Каждая из этих школ решала поставленные элеатами проблемы по-своему.

Содержание апорий о движении[править | править исходный текст] Ахиллес и черепаха[править | править исходный текст]

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Здесь и в следующей апории предполагается, что пространство и время не имеют предела делимости. Диоген Лаэртский считал автором этой знаменитой апории Парменида, учителя Зенона[12]. Черепаха как персонаж впервые упоминается у комментатора Симпликия; в тексте парадокса, приведённом у Аристотеля, быстроногий Ахиллес догоняет другого бегуна.