Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_K_Zachetu.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.2 Mб
Скачать

Вопрос 12 Напишите формулу Ньютона-Лейбница и объясните смысл всех ее величин.

Пусть функция y = f(x) непрерывна на отрезке [a; b] и F(x) - одна из первообразных функции на этом отрезке, тогда справедлива формула Ньютона-Лейбница .

Формулу Ньютона-Лейбница называют основной формулой интегрального исчисления.

Для доказательства формулы Ньютона-Лейбница нам потребуется понятие интеграла с переменным верхним пределом.

Если функция y = f(x) непрерывна на отрезке [a; b], то для аргумента   интеграл вида   является функцией верхнего предела. Обозначим эту функцию  , причем эта функция непрерывная и справедливо равенство  .

Действительно, запишем приращение функции  , соответствующее приращению аргумента   и воспользуемся пятым свойством определенного интеграла и следствием из десятого свойства:   где  .

Перепишем это равенство в виде  . Если вспомнить определение производной функции и перейти к пределу при  , то получим  . То есть,   - это одна из первообразных функции y = f(x) на отрезке [a; b]. Таким образом, множество всех первообразных F(x) можно записать как  , где С – произвольная постоянная.

Вычислим F(a), используя первое свойство определенного интеграла:  , следовательно,  . Воспользуемся этим результатом при вычислении F(b) , то есть  . Это равенство дает доказываемую формулу Ньютона-Лейбница  .

Приращение функции принято обозначать как  . Пользуясь этим обозначением, формула Ньютона-Лейбница примет вид  .

Для применения формулы Ньютона-Лейбница нам достаточно знать одну из первообразныхy=F(x) подынтегральной функции y=f(x) на отрезке [a; b] и вычислить приращение этой первообразной на этом отрезке. В статье методы интегрирования разобраны основные способы нахождения первообразной. Приведем несколько примеров вычисления определенных интегралов по формуле Ньютона-Лейбница для разъяснения.

Вопрос 13 Каков геометрический смысл определенного интеграла? Вычисление площади фигуры является одной из наиболее не простых проблем теории площадей. В школьном курсе геометрии мы научились находить площади основных геометрических фигур, например, круга, треугольника, ромба и т.п. Однако намного чаще приходится сталкиваться с вычислением площадей более сложных фигур. При решении подобных задач приходится прибегать к интегральному исчислению.

В этой статье мы рассмотрим задачу о вычислении площади криволинейной трапеции, причем подойдем к ней в геометрическом смысле. Это позволит нам выяснить прямую связь между определенным интегралом и площадью криволинейной трапеции.

Пусть функция y = f(x) непрерывна на отрезке [a; b] и не меняет знак на нем (то есть, неотрицательная или неположительная). Фигуру G, ограниченную линиями y = f(x), y = 0, x = a и x = b, называют криволинейной трапецией. Обозначим ее площадь S(G).

Подойдем к задаче вычисления площади криволинейной трапеции следующим образом. В разделе квадрируемые фигуры мы выяснили, что криволинейная трапеция является квадрируемой фигурой. Если разбить отрезок [a; b] на n частей  точками   и обозначить  , а точки   выбирать так, чтобы   при  , то фигуры, соответствующие нижней и верхней суммам Дарбу, можно считать входящей P и объемлющей Q многоугольными фигурами для G.

Таким образом,   и при увеличении количества точек разбиения n, мы придем к неравенству  , где   - сколь угодно малое положительное число, а s и S – нижняя и верхняя суммы Дарбу для данного разбиения отрезка [a; b]. В другой записи  . Следовательно, обратившись к понятию определенного интеграла Дарбу, получаем  .

Последнее равенство означает, что определенный интеграл   для непрерывной и неотрицательной функции y = f(x) представляет собой в геометрическом смысле площадь соответствующей криволинейной трапеции. В этом и состоит геометрический смысл определенного интеграла.

То есть, вычислив определенный интеграл  , мы найдем площадь фигуры, ограниченной линиями y = f(x), y = 0, x = a и x = b.

Замечание.

Если функция y = f(x) неположительная на отрезке [a; b], то площадь криволинейной трапеции может быть найдена как  .

Пример.

Вычислить площадь фигуры, ограниченной линиями  .

Решение.

Построим фигуру на плоскости: прямая y = 0 совпадает с осью абсцисс, прямые x = -2и x = 3 параллельны оси ординат, а кривая   может быть построена с помощьюгеометрических преобразований графика функции  .

Таким образом, нам требуется найти площадь криволинейной трапеции. Геометрический смысл определенного интеграла нам указывает на то, что искомая площадь выражается определенным интегралом. Следовательно,  . Этот определенный интеграл можно вычислить по формуле Ньютона-Лейбница:

Замечание.

При нахождении площадей криволинейных трапеций совсем не обязательно сначала строить эту фигуру. Если Вы знаете, что функция y = f(x) неотрицательная на отрезке [a; b] (как в нашем примере) или неположительная, то можно сразу применять формулы 

  .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]