
- •1. Понятие об электрическом поле
- •2. Характеристики электрического поля
- •3. Понятие об электрической ёмкости. Зависимость емкости от геометрических размеров плоского конденсатора
- •4. Способы соединения конденсаторов в батарею. Расчет общей электроемкости батареи конденсаторов
- •5. Понятие электрического тока в металлах и электролитах
- •6. Понятие об электрическом сопротивлении. Зависимость сопротивления от рода проводника, геометрических размеров, внешних условий
- •7. Способы соединений сопротивлений. Токи, напряжения и эквивалентное сопротивление при различных способах соединения
- •8. Работа и мощность постоянного электрического тока. Тепловое действие постоянного электрического тока
- •9. Понятие о магнитном поле. Характеристики магнитного поля: индукция, напряженность, магнитный поток. Единицы измерения
- •10. Электромагнитная индукция, её физические основы. Явление самоиндукции. Практическое использование электромагнитной индукции
- •11. Принцип получения переменного синусоидального тока. Действующее (эффективное) значение синусоидального тока
- •12. Закон Ома для участка и для полной цепи
- •13. Методы расчета цепей постоянного тока с одним источником эдс
- •14. Векторные диаграммы для трех простейших цепей переменного тока: с резистором, с конденсатором, с катушкой индуктивности
- •15. Схемы включения в электрическую цепь амперметра, вольтметра
- •16. Трансформаторы, назначение, конструкция принцип действия и режимы работы
- •17. Типы трансформаторов и их применение: трехфазные, многообмоточные, измерительные, автотрансформаторы
- •18. Классификация и назначение машин переменного тока
- •19. Устройство, принцип действия, область применения и основные характеристики асинхронных двигателей
- •20. Устройство, принцип действия, область применения и основные характеристики синхронных двигателей
- •21. Классификация, назначение, устройство и принцип действия электрических машин постоянного тока
- •22. Схемы включения, характеристики и область применения генераторов постоянного тока
- •23. Схемы включения, характеристики и область применения двигателей постоянного тока
- •24. Виды и режимы работы (длительный, повторно-кратковременный, кратковременный) электроприводов. Использование электропривода в строительных машинах и механизмах
- •25. Классификация и назначение аппаратуры управления и защиты. Простейшие схемы управления электроустановками
- •26. Преимущества и особенности передачи электрической энергии
- •27. Назначение защитного заземления и защитного зануления в электроустановках
- •28. Электрические сети на строительной площадке, особенности эксплуатации
- •29. Виды освещения. Классификация, основные характеристики, область применения и типы светильников и ламп
- •30. Выбор марки и сечения проводов по допустимому нагреву электрическим током
1. Понятие об электрическом поле
Электрическое поле — особая форма материи, существующая вокруг тел или частиц, обладающих электрическим зарядом, а также в свободном виде в электромагнитных волнах. Электрическое поле непосредственно невидимо, но может наблюдаться по его действию и с помощью приборов. Основным действием электрического поля является ускорение тел или частиц, обладающих электрическим зарядом.
Магнитное поле — особая форма материи, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты).
Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле. Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.
Электромагнитное поле — это совокупность электрических и магнитных полей, которые могут переходить друг в друга.
Электрический заряд — количественная характеристика, показывающая степень возможного участия тела в электромагнитных взаимодействиях. Единица измерения заряда в СИ — кулон. Впервые электрический заряд был введен в законе Кулона в 1785 году. Носителями электрического заряда являются электрически заряженные элементарные частицы, в том числе электрон (один отрицательный элементарный электрический заряд) и протон (один положительный элементарный заряд).
2. Характеристики электрического поля
Выделяют следующие характеристики электрического поля:
1. силовая характеристика – напряжённость электрического поля – это сила, которая действует на единицу заряда, помещённого в данное электрическое поле: E = F/Q . Измеряется в [В/м]
Если определённый точечный заряд q образует электрическое поле, то напряжённость этого поля в точке, находящейся на расстоянии r от заряда вычисляется по формуле: E = q/(4πε0εr2) где q– заряд, образующий данное электрическое поле; ε0 = 8,85*10-12 Ф/м- электрическая постоянная (диэлектрическая проницаемостью вакуума); ε- относительная диэлектрическая проницаемость среды, в которой образуется поле; r -расстояние от точечного заряда до точки, в которой исследуется напряжённость.
За направление напряжённости принимают направление силы, действующей на положительный заряд.
Величина напряжённости электрического поля графически изображается в виде силовых линий – тех линий, направление касательных к которым в любой точке совпадают с направлением напряжённости электрического поля. Чем больше линий – тем больше напряжённость.
2. энергетическая характеристика электрического поля – потенциал.
В каждой точке электрического поля на внесённый в это поле заряд действует определённая сила. При перемещении заряда в электрическом поле будет совершаться работа. При этом каждая точка электрического поля будет характеризоваться потенциалом.
Потенциал поля в данной точке – это потенциальная энергия электрического поля в этой точке, приходящаяся на единицу помещённого в эту точку заряда: φ = Wp/q [В] Потенциал поля характеризует возможную работу, которую совершает электрическое поле или которая совершается над электрическим полем при перемещении этого заряда в точку с другим потенциалом: Δ φ = A/q.
Поскольку работа будет совершаться только при перемещении заряда между точками, обладающими неодинаковыми потенциалами, то физический смысл имеет лишь разность потенциалов, или напряжение между двумя точками электрического поля. Поэтому, когда употребляют термин ″потенциал″, имеют в виду разность потенциалов между данной точкой, потенциал которой измеряют, и бесконечно удалённой точкой пространства, потенциал которой можно считать равным 0.
Только разность потенциалов можно измерить с помощью вольтметра. Считают, что напряженность электрического поля – отрицательный градиент потенциала.