
- •Некрасова м.Г. - Методы оптимизации Оглавление
- •Глава 1. Введение в методы оптимизации
- •Вопросы к главе 1
- •Глава 2. Основы теории оптимизации
- •2.1. Параметры плана
- •2.2. Целевая функция (план)
- •Вопросы к главе 2
- •Глава 3. Функция одной переменной
- •3.1. Определение функции одной переменной и её свойства
- •3.2. Исследование функций в экономике. Нахождение максимума прибыли
- •3.3. Определение глобального экстремума
- •3.4. Выпуклость, вогнутость функции
- •3.4. Критерий оптимальности
- •Замечание.
- •3.6. Идентификация оптимумов
- •Вопросы к главе 3
- •Глава 4. Одномерная оптимизация
- •4.1. Методы исключения интервалов
- •4.1.1. Метод сканирования
- •4.1.2. Метод деления отрезка пополам
- •4.1.2. Метод золотого сечения
- •4.1.2. Сравнительная характеристика методов исключения интервалов
- •4.2. Полиномиальная аппроксимация и методы точечного оценивания
- •4.2.1. Метод параболической аппроксимации
- •4.2.2. Метод Пауэлла
- •4.3. Сравнение методов одномерного поиска
- •Метод Пауэлла
- •Глава 5. Функции многих переменных
- •5.1. Функции многих переменных, их обозначение и область определения
- •5.2. Некоторые многомерные функции, используемые в экономике
- •5.3. Частные производные функции многих переменных
- •5.3. Экономический смысл частных производных
- •5.3. Частные производные высших порядков
- •5.6. Свойства функций нескольких переменных
- •5.7. Производная по направлению. Градиент. Линии уровня функции
- •5.8. Экстремум функции многих переменных
- •Вопросы к главе 5
- •Глава 6. Многомерная безусловная градиентная оптимизация
- •6.1. Концепция методов
- •6.2. Метод градиентного спуска
- •6.3. Метод наискорейшего спуска
- •Вопросы к главе 6
- •Глава 7. Критерии оптимальности в задачах с ограничениями
- •7.1. Задачи с ограничениями в виде равенств
- •7.2. Множители Лагранжа
- •7.3. Экономическая интерпретация множителей Лагранжа
- •7.4. Условия Куна - Таккера
- •7.4.1. Условия Куна – Таккера и задача Куна - Таккера
- •7.5. Теоремы Куна - Таккера
- •7.6. Условия существования седловой точки
- •Теорема 4. Необходимые условия оптимальности
- •Вопросы к главе 7
- •Глава 8. Модели динамического программирования
- •8.1. Предмет динамического программирования
- •8.2. Постановка задачи динамического программирования
- •8.3. Принцип оптимальности и математическое описание динамического процесса управления
- •8.4. Общая схема применения метода динамического программирования
- •8.5. Двумерная модель распределения ресурсов
- •8.6. Дискретная динамическая модель оптимального распределения ресурсов
- •2 Этап. Безусловная оптимизация.
- •8.7. Выбор оптимальной стратегии обновления оборудования
- •8.8. Выбор оптимального маршрута перевозки грузов
- •2 Этап. Безусловная оптимизация.
- •8.9. Построение оптимальной последовательности операций в коммерческой деятельности
- •1 Этап. Условная оптимизация.
- •Вопросы к главе 8
- •Пример выполнения задачи 1
- •Пример выполнения задачи 4
- •Пример выполнения задачи 5
- •Расчетно-графическое задание 2
- •Пример выполнения задачи 1
- •Пример выполнения задачи 2
- •Пример выполнения задачи 3
- •Пример выполнения задачи 4
- •1 Этап. Условная оптимизация.
- •2 Этап. Безусловная оптимизация.
- •2 Этап. Безусловная оптимизация.
Вопросы к главе 3
1. Приведите определение функции.
2. Что такое область определения и область допустимых значений функции?
3. Какие существуют способы задания функции? Приведите конкретные примеры каждого способа.
4. Дайте определения возрастания и убывания функции. Приведите примеры возрастающей и убывающей функций.
5. Как проверить, является ли функция возрастающей или убывающей?
1. Приведите пример функции, описывающей зависимость предложения от цены. Постройте ее график.
2. Что такое точка перегиба и как её идентифицировать?
3. Как проверить, является ли функция выпуклой или вогнутой?
4. В чем состоит свойство унимодальности функций?
5. Пусть данная точка удовлетворяет достаточным условиям существования локального минимума. Как установить, является ли этот минимум глобальным?
6. Приведите алгоритм определения глобального оптимума.
Глава 4. Одномерная оптимизация
4.1. Методы исключения интервалов
До этого рассматривался вопрос анализа «в статике», который заключается в том, чтобы определить, является ли данное решение оптимальным. Для этого были построены необходимые и достаточные условия оптимальности решения. Далее мы переходим к изучению вопроса анализа «в динамике», связанного с нахождением оптимального решения. С этой целью ниже рассматривается ряд одномерных методов поиска, ориентированных на нахождение точки оптимума внутри заданного интервала. Методы поиска, которые позволяют определить оптимум функции одной переменной путем последовательного исключения подынтервалов и, следовательно, путем уменьшения интервала поиска, носят название методов исключения интервалов.
Ранее было дано определение унимодальной функции. Унимодальность функций является исключительно важным свойством. Фактически все одномерные методы поиска, используемые на практике, основаны на предположении, что исследуемая функция в допустимой области, по крайней мере, обладает свойством унимодальности. Полезность этого свойства определяется тем фактом, что для унимодальной функции f(x) сравнение значений f(x) в двух различных точках интервала поиска позволяет определить, в каком из заданных двумя указанными точками подынтервалов точка оптимума отсутствует.
Теорема.
Пусть функция f
унимодальна на замкнутом интервале
,
а её минимум достигается в точке х*.
Рассмотрим точки х1 и х2,
расположенные в интервале таким образом,
что a < x1
< x2 <
b. Сравнивая
значения функции в точках х1
и х2, можно сделать следующие
выводы:
1)
Если f(x1)
> f(x2),
то точка минимума f(x)
не лежит в интервале (а, х1),
т.е.
(см.
рис. 14).
2)
Если f(x1)
< f(x2),
то точка минимума не лежит в интервале
(х2, b),
т.е.
(см.
рис. 15).
Замечание. Если f(x1) = f(x2), то можно исключить оба крайних интервала (а, х1) и (х2, b); при этом точка минимума должна находится в интервале (х1, х2).
Согласно приведенной выше теореме, которую иногда называют правилом исключения интервалов, можно реализовать процедуру поиска, позволяющую найти точку оптимума путем последовательного исключения частей исходного ограниченного интервала. Поиск завершается, когда оставшийся подынтервал уменьшается до достаточно малых размеров. Заметим, что правило исключения интервалов, устраняет необходимость полного перебора всех допустимых точек. Несомненным достоинством поисковых методов такого рода является то, что они основаны лишь на вычислении значений функций. При этом не требуется, чтобы исследуемые функции были дифференцируемы; более того, допустимы случаи, когда функцию нельзя даже записать в аналитическом виде. Единственным требованием является возможность определения значений функции f(x) в заданных точках x с помощью прямых расчетов или имитационных экспериментов.
Вообще в процессе применения рассматриваемых методов поиска можно выделить два этапа:
этап установления границ интервала, на котором реализуется процедура поиска границ достаточно широкого интервала, содержащего точку оптимума;
этап уменьшения интервала, на котором реализуется конечная последовательность преобразований исходного интервала с тем, чтобы уменьшить его длину до заранее установленной величины.
В данном разделе рассматриваются методы решения одномерных задач оптимизации вида
где х – скаляр, a и b – соответственно концы интервала, из которого берутся значения переменной х.
В основном рассматриваются алгоритмы, связанные с построением улучшающей последовательности. Решением задачи называется х*, при котором f(x*) f(x) для любого значения . При практическом решении задач не будем различать два значения xi и xi+1, если |xi-xi+1|, где - задаваемая погрешность решения.