
- •Некрасова м.Г. - Методы оптимизации Оглавление
- •Глава 1. Введение в методы оптимизации
- •Вопросы к главе 1
- •Глава 2. Основы теории оптимизации
- •2.1. Параметры плана
- •2.2. Целевая функция (план)
- •Вопросы к главе 2
- •Глава 3. Функция одной переменной
- •3.1. Определение функции одной переменной и её свойства
- •3.2. Исследование функций в экономике. Нахождение максимума прибыли
- •3.3. Определение глобального экстремума
- •3.4. Выпуклость, вогнутость функции
- •3.4. Критерий оптимальности
- •Замечание.
- •3.6. Идентификация оптимумов
- •Вопросы к главе 3
- •Глава 4. Одномерная оптимизация
- •4.1. Методы исключения интервалов
- •4.1.1. Метод сканирования
- •4.1.2. Метод деления отрезка пополам
- •4.1.2. Метод золотого сечения
- •4.1.2. Сравнительная характеристика методов исключения интервалов
- •4.2. Полиномиальная аппроксимация и методы точечного оценивания
- •4.2.1. Метод параболической аппроксимации
- •4.2.2. Метод Пауэлла
- •4.3. Сравнение методов одномерного поиска
- •Метод Пауэлла
- •Глава 5. Функции многих переменных
- •5.1. Функции многих переменных, их обозначение и область определения
- •5.2. Некоторые многомерные функции, используемые в экономике
- •5.3. Частные производные функции многих переменных
- •5.3. Экономический смысл частных производных
- •5.3. Частные производные высших порядков
- •5.6. Свойства функций нескольких переменных
- •5.7. Производная по направлению. Градиент. Линии уровня функции
- •5.8. Экстремум функции многих переменных
- •Вопросы к главе 5
- •Глава 6. Многомерная безусловная градиентная оптимизация
- •6.1. Концепция методов
- •6.2. Метод градиентного спуска
- •6.3. Метод наискорейшего спуска
- •Вопросы к главе 6
- •Глава 7. Критерии оптимальности в задачах с ограничениями
- •7.1. Задачи с ограничениями в виде равенств
- •7.2. Множители Лагранжа
- •7.3. Экономическая интерпретация множителей Лагранжа
- •7.4. Условия Куна - Таккера
- •7.4.1. Условия Куна – Таккера и задача Куна - Таккера
- •7.5. Теоремы Куна - Таккера
- •7.6. Условия существования седловой точки
- •Теорема 4. Необходимые условия оптимальности
- •Вопросы к главе 7
- •Глава 8. Модели динамического программирования
- •8.1. Предмет динамического программирования
- •8.2. Постановка задачи динамического программирования
- •8.3. Принцип оптимальности и математическое описание динамического процесса управления
- •8.4. Общая схема применения метода динамического программирования
- •8.5. Двумерная модель распределения ресурсов
- •8.6. Дискретная динамическая модель оптимального распределения ресурсов
- •2 Этап. Безусловная оптимизация.
- •8.7. Выбор оптимальной стратегии обновления оборудования
- •8.8. Выбор оптимального маршрута перевозки грузов
- •2 Этап. Безусловная оптимизация.
- •8.9. Построение оптимальной последовательности операций в коммерческой деятельности
- •1 Этап. Условная оптимизация.
- •Вопросы к главе 8
- •Пример выполнения задачи 1
- •Пример выполнения задачи 4
- •Пример выполнения задачи 5
- •Расчетно-графическое задание 2
- •Пример выполнения задачи 1
- •Пример выполнения задачи 2
- •Пример выполнения задачи 3
- •Пример выполнения задачи 4
- •1 Этап. Условная оптимизация.
- •2 Этап. Безусловная оптимизация.
- •2 Этап. Безусловная оптимизация.
2 Этап. Безусловная оптимизация.
На этапе условной оптимизации получено, что минимальные затраты на перевозку груза из пункта 1 в пункт 10 составляют F4(1)=20. Данный результат достигается при движении груза из 1-го пункта в 3-й. По данным таблицы третьего шага необходимо двигаться в пункт 6, затем – в пункт 7 (см. таблицу второго шага) и из него – в конечный пункт (см. таблицу первого шага). Таким образом, оптимальный маршрут доставки груза: 1 3 6 7 10. На рис. 45 жирными стрелками показан оптимальный путь.
|
|
|
|
8.9. Построение оптимальной последовательности операций в коммерческой деятельности
Пусть на оптовую базу прибыло n машин с товаром для разгрузки и m машин для загрузки товаров, направляемых в магазины. Материально ответственное лицо оптовой базы осуществляет оформление документов по операциям разгрузки или загрузки для одной машины, а затем переходит к обслуживанию другой машины. Издержки от операций обусловлены простоем транспорта, типом операции (прием или отправка товара) и не зависят от конкретной машины. Необходимо спланировать последовательность операций обоих видов таким образом, чтобы суммарные издержки по приему и отправке товаров для всех машин были минимальными.
Из условия следует, что состояние экономической системы характеризуется двумя параметрами: количеством принятых и оформленных машин по разгрузке товара и количеством машин, отправленных с товаром в магазины. Поэтому решение будем искать на плоскости XOY, на ограниченном прямыми прямоугольнике, который является областью допустимых состояний системы. Если по оси Х отложить число (n) разгруженных машин, а по оси Y – число (m) загруженных товаром машин, то можно построить на плоскости граф состояний процесса, в котором каждая вершина характеризует состояние операции приема и отгрузки товара на оптовой базе. Ребра этого графа означают выполнение работы по приему или отправке товара на очередной машине. Каждому ребру можно сопоставить издержки, связанные с выполнением операции по разгрузке или загрузке машины.
Пример 76. Пусть n = 6, m = 4. Известны затраты по выполнению каждой операции, которые показаны на ребрах графа (рис. 46).
|
|
|
|
Точка So определяет начало процесса, а S1 – конечное состояние, соответствующее приему и отправке всех машин. Оптимизацию процесса будем производить с конечного состояния – S1. Весь процесс разобьем на шаги, их количество k = n + m = 6 + 4 =10. Каждый шаг представляет собой сечение графа состояний, проходящее через вершины (на рис. 46 сечения показаны косыми линиями).
1 Этап. Условная оптимизация.
|
|
|
|
1-й шаг. k = 1. На первом шаге, с задаваемым сечением A1, B1, из состояний A1 и В1 возможен только один вариант перехода в конечное состояние S1. Поэтому в вершинах А1 и В1 записываем соответственно издержки 8 и 11. Ребра A1S1 и B1S1 обозначаем стрелкой, направленной в вершину S1, как показано на рис. 47.
2-й шаг. k = 2. Второй шаг оптимизации задается сечением по вершинам A2, B2, C1. Из состояний A2 и С1 возможен единственный переход в вершины А1 и В1 соответственно, поэтому в вершинах А2 и С1 записываем суммарные издержки 17 и 22 на первых двух шагах перехода в конечное состояние S1.
|
|
|
|
Из вершины В2 возможны два варианта перехода: в вершину А1 или вершину В1. При переходе В2 А1 сумма издержек составляет 10+8=18, на переходе В2 В1 сумма составляет 13+11=24. Из двух вариантов суммарных издержек выбираем наименьшую (18) и обозначаем стрелкой условно оптимальный переход В2 А1, как показано на рис. 48.
3-й шаг. k = 3. На третьем шаге сечение проходит через вершины A3, B3, C2, D1. Из вершин A3 и D1 возможен единственный переход в вершины А2 и С1 соответственно. Суммарные издержки для состояния D1 равны 22+12=34. Из вершины B3 возможны два варианта перехода: в вершину А2 - издержки равны 17+8=25; в вершину В2 – 18+9=27.
Для вершины С2 возможен переход в вершину В2 (18+10=28) и в вершину С1 (22+12=34). Выбираем для вершин В3 и С2 наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход, как показано на рис. 49.
|
|
|
|
Продолжая процесс аналогичным образом для оставшихся шагов, приходим в точку S0. В результате получим сетевой граф условно оптимальных переходов, представленный на рис. 50.
Минимально возможные суммарные издержки по обслуживанию всех 10 машин на оптовой базе составляют 88 усл. ед.
2-й этап. Безусловная оптимизация.
Определяем оптимальную траекторию на исходном сетевом графе, просматривая результаты всех шагов в обратном порядке, учитывая, что выбор некоторого управления на k-м шаге приводит к тому, что состояние на (k-1)-м шаге становится определенным.
|
|
|
|
В результате строим ориентированный граф от состояния S0 к состоянию S1, представленный на рис. 51, на каждом шаге безусловной оптимизации переход почти всегда единственен и совпадает с построенными условно оптимальными переходами.
|
|
|
|
Минимальные издержки Fmin соответствуют следующему оптимальному пути на графе:
и равны: Fmin = 12+9+9+7+7+10+9+8+9+8=88 усл. ед.
Таким образом, в соответствии с решением, оптимальное управление процессом разгрузки и загрузки машин товаром состоит в следующем: на первом шаге следует оформить документы по разгрузке одной машины, на втором – по загрузке одной машины, далее обслуживать три машины по разгрузке товара, три машины по загрузке и на последних двух шагах оформить документы по разгрузке двух машин.