
- •Некрасова м.Г. - Методы оптимизации Оглавление
- •Глава 1. Введение в методы оптимизации
- •Вопросы к главе 1
- •Глава 2. Основы теории оптимизации
- •2.1. Параметры плана
- •2.2. Целевая функция (план)
- •Вопросы к главе 2
- •Глава 3. Функция одной переменной
- •3.1. Определение функции одной переменной и её свойства
- •3.2. Исследование функций в экономике. Нахождение максимума прибыли
- •3.3. Определение глобального экстремума
- •3.4. Выпуклость, вогнутость функции
- •3.4. Критерий оптимальности
- •Замечание.
- •3.6. Идентификация оптимумов
- •Вопросы к главе 3
- •Глава 4. Одномерная оптимизация
- •4.1. Методы исключения интервалов
- •4.1.1. Метод сканирования
- •4.1.2. Метод деления отрезка пополам
- •4.1.2. Метод золотого сечения
- •4.1.2. Сравнительная характеристика методов исключения интервалов
- •4.2. Полиномиальная аппроксимация и методы точечного оценивания
- •4.2.1. Метод параболической аппроксимации
- •4.2.2. Метод Пауэлла
- •4.3. Сравнение методов одномерного поиска
- •Метод Пауэлла
- •Глава 5. Функции многих переменных
- •5.1. Функции многих переменных, их обозначение и область определения
- •5.2. Некоторые многомерные функции, используемые в экономике
- •5.3. Частные производные функции многих переменных
- •5.3. Экономический смысл частных производных
- •5.3. Частные производные высших порядков
- •5.6. Свойства функций нескольких переменных
- •5.7. Производная по направлению. Градиент. Линии уровня функции
- •5.8. Экстремум функции многих переменных
- •Вопросы к главе 5
- •Глава 6. Многомерная безусловная градиентная оптимизация
- •6.1. Концепция методов
- •6.2. Метод градиентного спуска
- •6.3. Метод наискорейшего спуска
- •Вопросы к главе 6
- •Глава 7. Критерии оптимальности в задачах с ограничениями
- •7.1. Задачи с ограничениями в виде равенств
- •7.2. Множители Лагранжа
- •7.3. Экономическая интерпретация множителей Лагранжа
- •7.4. Условия Куна - Таккера
- •7.4.1. Условия Куна – Таккера и задача Куна - Таккера
- •7.5. Теоремы Куна - Таккера
- •7.6. Условия существования седловой точки
- •Теорема 4. Необходимые условия оптимальности
- •Вопросы к главе 7
- •Глава 8. Модели динамического программирования
- •8.1. Предмет динамического программирования
- •8.2. Постановка задачи динамического программирования
- •8.3. Принцип оптимальности и математическое описание динамического процесса управления
- •8.4. Общая схема применения метода динамического программирования
- •8.5. Двумерная модель распределения ресурсов
- •8.6. Дискретная динамическая модель оптимального распределения ресурсов
- •2 Этап. Безусловная оптимизация.
- •8.7. Выбор оптимальной стратегии обновления оборудования
- •8.8. Выбор оптимального маршрута перевозки грузов
- •2 Этап. Безусловная оптимизация.
- •8.9. Построение оптимальной последовательности операций в коммерческой деятельности
- •1 Этап. Условная оптимизация.
- •Вопросы к главе 8
- •Пример выполнения задачи 1
- •Пример выполнения задачи 4
- •Пример выполнения задачи 5
- •Расчетно-графическое задание 2
- •Пример выполнения задачи 1
- •Пример выполнения задачи 2
- •Пример выполнения задачи 3
- •Пример выполнения задачи 4
- •1 Этап. Условная оптимизация.
- •2 Этап. Безусловная оптимизация.
- •2 Этап. Безусловная оптимизация.
Вопросы к главе 5
1. Дайте определение функции многих переменных.
2. Приведите примеры функций многих переменных, используемых в экономике.
3. Что называется графиком функции двух переменных? Приведите примеры.
4. Сформулируйте определение множества (линии) уровня функции двух переменных. Может ли множество уровня функции двух переменных не быть линией?
5. Опишите взаимосвязь между градиентом функции двух переменных и ее линией уровня.
6. Перечислите основные свойства градиента функции.
7. Дайте определение возрастающей (убывающей) функции многих переменных.
8. В каком случае функция является вогнутой?
9. Всегда ли локальный экстремум выпуклой функции является глобальным?
10. Дайте определение экстремума функции двух переменных.
11. Сформулируйте достаточные условия максимума и минимума функции двух переменных.
Глава 6. Многомерная безусловная градиентная оптимизация
6.1. Концепция методов
В данном разделе рассматриваются методы построения улучшающих последовательностей при отыскании экстремума функции R(x) без активных ограничений.
Определение. Активными называют ограничения, на границе которых находится решение.
Если известно, что решение лежит строго внутри допустимой области, например, в случае ограничений типа неравенств, то такие ограничения лучше выводить из задачи на этапе её постановки.
Замечание. Ограничения типа равенств всегда активные.
Величина шага х в рекуррентном соотношении
вычисляется с использованием градиента целевой функции R(x), т. е.
,
при этом шаг может определяться с использованием градиента в одной (текущей) или в двух (текущей и предыдущей) точках. Направление градиента, как известно, показывает направления наискорейшего возрастания функции, а его модуль — скорость этого возрастания.
Для решения задачи безусловной минимизации функции многих переменных наиболее часто применяют приближенные методы, в основе которых лежит вычисление производных функций первого порядка. Такие методы обычно называют градиентными.
Рассмотрим простой пример. Представим себе, что альпинисту завязали глаза и сказали, что он должен добраться до вершины «унимодальной» горы. Даже ничего не видя, он может это сделать, если все время будет двигаться вверх. Хотя любая ведущая вверх тропа, в конечном счете, приведет его к вершине, кратчайшей из них будет самая крутая, если, правда, альпинист не натолкнется на вертикальный обрыв, который придется обходить. (Математическим эквивалентом обрыва на поверхности, образуемой целевой функцией, являются те ее места, где поставлены условные ограничения). Предположим пока, что задача оптимизации не содержит ограничений. Позднее мы включим их в схему поиска.
В
отличие от других рассмотренных выше
вычислительных методов поисковые
методы оптимизации содержат неформально
(т.е. субъективно) задаваемые параметры,
которые существенно влияют на
эффективность поиска, вследствие чего
один и тот же метод может дать совершенно
различные траектории поиска. Поэтому
для всех методов, рассматриваемых далее,
на рис. 39 приводится лишь одна из
возможных траекторий: 1 – оптимум; 2 –
траектория метода градиента; 3 –
траектория метода тяжелого шарика; 4 –
траектория метода наискорейшего спуска;
5 – траектория метода сопряженных
градиентов; 6 – начальные точки траектории.
Кроме того, для всех приведенных
траекторий выбраны различные начальные
условия, с тем, чтобы не загромождать
построения. На этом и последующих
рисунках зависимость R(х1,
х2) приведена в
виде линий уровня на плоскости в
координатах х1 - х2.