
- •Некрасова м.Г. - Методы оптимизации Оглавление
- •Глава 1. Введение в методы оптимизации
- •Вопросы к главе 1
- •Глава 2. Основы теории оптимизации
- •2.1. Параметры плана
- •2.2. Целевая функция (план)
- •Вопросы к главе 2
- •Глава 3. Функция одной переменной
- •3.1. Определение функции одной переменной и её свойства
- •3.2. Исследование функций в экономике. Нахождение максимума прибыли
- •3.3. Определение глобального экстремума
- •3.4. Выпуклость, вогнутость функции
- •3.4. Критерий оптимальности
- •Замечание.
- •3.6. Идентификация оптимумов
- •Вопросы к главе 3
- •Глава 4. Одномерная оптимизация
- •4.1. Методы исключения интервалов
- •4.1.1. Метод сканирования
- •4.1.2. Метод деления отрезка пополам
- •4.1.2. Метод золотого сечения
- •4.1.2. Сравнительная характеристика методов исключения интервалов
- •4.2. Полиномиальная аппроксимация и методы точечного оценивания
- •4.2.1. Метод параболической аппроксимации
- •4.2.2. Метод Пауэлла
- •4.3. Сравнение методов одномерного поиска
- •Метод Пауэлла
- •Глава 5. Функции многих переменных
- •5.1. Функции многих переменных, их обозначение и область определения
- •5.2. Некоторые многомерные функции, используемые в экономике
- •5.3. Частные производные функции многих переменных
- •5.3. Экономический смысл частных производных
- •5.3. Частные производные высших порядков
- •5.6. Свойства функций нескольких переменных
- •5.7. Производная по направлению. Градиент. Линии уровня функции
- •5.8. Экстремум функции многих переменных
- •Вопросы к главе 5
- •Глава 6. Многомерная безусловная градиентная оптимизация
- •6.1. Концепция методов
- •6.2. Метод градиентного спуска
- •6.3. Метод наискорейшего спуска
- •Вопросы к главе 6
- •Глава 7. Критерии оптимальности в задачах с ограничениями
- •7.1. Задачи с ограничениями в виде равенств
- •7.2. Множители Лагранжа
- •7.3. Экономическая интерпретация множителей Лагранжа
- •7.4. Условия Куна - Таккера
- •7.4.1. Условия Куна – Таккера и задача Куна - Таккера
- •7.5. Теоремы Куна - Таккера
- •7.6. Условия существования седловой точки
- •Теорема 4. Необходимые условия оптимальности
- •Вопросы к главе 7
- •Глава 8. Модели динамического программирования
- •8.1. Предмет динамического программирования
- •8.2. Постановка задачи динамического программирования
- •8.3. Принцип оптимальности и математическое описание динамического процесса управления
- •8.4. Общая схема применения метода динамического программирования
- •8.5. Двумерная модель распределения ресурсов
- •8.6. Дискретная динамическая модель оптимального распределения ресурсов
- •2 Этап. Безусловная оптимизация.
- •8.7. Выбор оптимальной стратегии обновления оборудования
- •8.8. Выбор оптимального маршрута перевозки грузов
- •2 Этап. Безусловная оптимизация.
- •8.9. Построение оптимальной последовательности операций в коммерческой деятельности
- •1 Этап. Условная оптимизация.
- •Вопросы к главе 8
- •Пример выполнения задачи 1
- •Пример выполнения задачи 4
- •Пример выполнения задачи 5
- •Расчетно-графическое задание 2
- •Пример выполнения задачи 1
- •Пример выполнения задачи 2
- •Пример выполнения задачи 3
- •Пример выполнения задачи 4
- •1 Этап. Условная оптимизация.
- •2 Этап. Безусловная оптимизация.
- •2 Этап. Безусловная оптимизация.
4.1.2. Сравнительная характеристика методов исключения интервалов
Выше были рассмотрены примеры решения задач тремя различными методами. Еще раз подчеркнем, что эти методы пригодны для любых непрерывных одноэкстремальных функций (для метода половинного деление необходимо, чтобы функция не имела горизонтальных участков). Сходимость методов и их эффективность не зависят от свойств функции. Основное достоинство метода сканирования заключается в снижении количества повторов вычисления для решения с заданной погрешностью, но при этом повышается вероятность пропуска «острого» глобального экстремума. Все три метода легко поддаются алгоритмизации. Для повышения точности нахождения решения необходимо просто уменьшить задаваемую погрешность. При сравнительном анализе можно сделать вывод, что метод золотого сечения оказывается более эффективным по сравнению с остальными двумя методами, поскольку он требует наименьшего числа оцениваний значения функции для достижения одной и той же заданной точности.
4.2. Полиномиальная аппроксимация и методы точечного оценивания
Применение методов исключения интервалов, которые рассматривались в предыдущем разделе, накладывает единственное требование на исследуемую функцию: она должна быть унимодальной. Следовательно, указанные методы можно использовать для анализа как непрерывных, так и разрывных функций, а также в случаях, когда переменные принимают значения из дискретного множества. Логическая структура поиска с помощью методов исключения интервалов основана на простом сравнении значений функции в двух пробных точках. Кроме того, при таком сравнении в расчет принимается только отношение порядка на множестве значений функции и не учитывается величина разности между значениями функции. В данном разделе рассматриваются методы поиска, которые позволяют учесть относительные изменения значений функции и, как следствие, в ряде случаев оказываются более эффективными, чем методы исключения интервалов. Однако выигрыш в эффективности достигается ценой введения дополнительного требования, согласно которому исследуемые функции должны быть достаточно гладкими.
Основная идея рассматриваемых методов связана с возможностью аппроксимации гладкой функции полиномом и последующего использования аппроксимирующего полинома для оценивания координаты точки оптимума. Необходимыми условиями эффективной реализации такого подхода являются унимодальность и непрерывность исследуемой функции. Если функция непрерывна в некотором интервале, то ее с любой степенью точности можно аппроксимировать полиномом достаточно высокого порядка. Следовательно, если функция унимодальна и найден полином, который достаточно точно ее аппроксимирует, то координату точки оптимума функции можно оценить путем вычисления координаты точки оптимума полинома. Качество оценок координаты точки оптимума, получаемых с помощью аппроксимирующего полинома, можно повысить двумя способами: использованием полинома более высокого порядка и уменьшением интервала аппроксимации. Второй способ, вообще говоря, является более предпочтительным, поскольку построение аппроксимирующего полинома порядка выше третьего становится весьма сложной процедурой, тогда как уменьшение интервала в условиях, когда выполняется предположение об унимодальности функции, особой сложности не представляет.