
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в
- •Часть с
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
Согласовано Цикловая комиссия общеобразовательных, гуманитарных и социальных дисциплин
Председатель ЦК Жеребятьева Е.Н.
« » 20 г. |
Промежуточная аттестация по математике специальности 260807 190631
БИЛЕТ №22 |
Утверждаю
Заместитель директора по учебной работе
Т.И. Агафонова
« » 20 г. |
Часть а.
А1. Найдите f `(1), если f (x)=ℓn x – 2 cos x :
а) 1; б) -2 cos1; в)1+2sin1; г)0 .
А2. Найдите промежутки убывания функции f(х)=3-1/2х:
а) (-∞;+∞); в) [0;+∞);
б) (-∞;0]; г) [-1/2;1/2].
А3. Найдите максимум и минимум функции у=х3/3+х2/2-2х-2⅓ :
а)-1; б)1; в)0; г) -3,5.
А4. Укажите первообразную функции f (x)= х + cos x
а) F(x)=x2/2+sinx; в) F(x)= x2+cosx;
б) F(x)=x2/2-sinx; г) F (x)= 2-cosx.
А5. Вычислите ∫ cos 0,5 xdx
а) -2; б)2; в)-3; г)3.
А
0
а) -3,5; б)4,5; в)-4,5; г)1,5.
А6. Даны векторы а(2;3;-1), b (0;1;4) и с(1;0;-3). Определите координаты вектора a – b - c.
а) (3;2;-2); б) (1;2;-2); в) (3;4;0); г) (1;4;0).
А7. Найдите расстояние между точками А (-2;7) и В (4;-1).
а)√40; б)40; в)10; г)√10.
А8. Чему равна боковая поверхность конуса?
а) 2πRH; б) 2πRℓ ; в)πRℓ ; г)πRH.
А9. Чему равен объем шара?
а)4/3 π R3; б) π R2H; в) 2π RH; г) 1/3π R2H.
А10. Через концы отрезка АВ и его середину М проведены параллельные прямые, пересекающие некоторую плоскость в точках А1; В1 и М1. Найдите длину отрезка ММ1, если АВ не пересекает плоскость и если АА1=8,3см, а ВВ1=4,1см.
а)12,4см; б) 4,2см; в)2,4см; г)6,2см.
Часть в.
В1. Число 16 разложите на два слагаемых так, чтобы сумма квадратов была наименьшей.
В2. Чему равна площадь криволинейной трапеции, ограниченной линиями у=1-х3; х=0; х=1/2; у=0 ?
В3. Диагональ прямоугольного параллелепипеда равна 6 см и образует с двумя боковыми гранями углы 30° и 45°. Найти объем параллелепипеда.
В4. Найдите угол между векторами а (4;-2;6) и b (2;3;1).
В5. Концы данного отрезка, длинной 125 см, отстоят от плоскости на 100см и 56 см. Найдите длину проекции данного отрезка на плоскости.
Часть с.
С1. Найдите объем фигуры, полученной в результате вращения части графика y=cosx, заключённой между точками, абсциссы которых равны х=0 и х = π/2, вокруг оси ОХ.
C2. В прямом параллелепипеде стороны основания 3 см и 5см, а одна из диагоналей основания 4см. Найдите большую диагональ параллелепипеда, зная, что меньшая диагональ образует с плоскостью основания угол 60°.
С3. Радиусы оснований усечённого конуса 3 дм и 7дм, образующая 5 дм. Найдите площадь осевого сечения.
Преподаватель Т.М. Леденева