
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в
- •Часть с
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
- •Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
- •Часть а.
- •Часть в.
- •Часть с.
Гобу спо во «Воронежский государственный колледж профессиональных технологий экономики и сервиса»
Согласовано Цикловая комиссия общеобразовательных, гуманитарных и социальных дисциплин
Председатель ЦК Жеребятьева Е.Н.
« » 20 г. |
Промежуточная аттестация по математике специальности 260807 190631
БИЛЕТ №17 |
Утверждаю
Заместитель директора по учебной работе
Т.И. Агафонова
« » 20 г. |
Часть а.
А1. Найдите f`` (π/4),если f (x)=ex*sinx
а)1; б) 2еπ/4 √2; в)0; г) √2 еπ/4.
А2. Найдите промежутки убывания функции f(x) = x3 – 27 x
а)(-∞;-3]U[3;∞); б) [-3;3]; в) (-∞;-3]; г)[3;∞).
А3. Найдите максимум функции у= – х 3/3 – х 2/2+2х+8+5/6
а)10; б) -10; в) 0; г)2.
А4. Укажите первообразную функции f(x)=2-ex
а
2
б)F(x)=2x-1/x ; г)F(x)=2x-ex.
А5. Вычислите ∫ (1+2х)3dx
а
0
А6. Даны векторы а (2;3;-1) ; b (0;1;4) и c(1;0;-3). Определите координаты
2a-b+c.
а)(3;7;-3); б) (4;4;0); в) (5;5;-3); г) (3;7;-9).
А7. Найдите расстояние между точками А(1;1) и В(2;3)
а)√7; б)7; в) 5; г)√5.
А8. Чему равна поверхность сферы?
а)4πR²; б)4/3πR³; в)2πR; г)πR².
А9. Чему равен объем прямоугольного параллелепипеда с размерами a, b, c?
а)2a2+2b2+2c2; б)abc; в)2abc; г)4a+4b+4c.
А10. Даны параллелограмм ABCD и не пересекающая его плоскость. Через вершины параллелограмма проведены параллельные прямые, пересекающие данную плоскость в точках A1,B1,C1,D1. Найти DD1, если АА1=4м, ВВ1=3м, СС1=1м.
а)2м; б) 8м; в) 7м; г)1м.
Часть в
В1. Число 4 разложите на два слагаемых так, чтобы сумма квадратов была наименьшей.
В2. Найдите площадь фигуры, ограниченной графиками функций у=х2+5х+6, х=-1, х=2, у=0.
В3. Высота правильной четырёхугольной пирамиды равна 7 см, а сторона основания 8 см. Найдите боковое ребро.
В4. Найдите угол между векторами a(1;2) и b(1;-1/2).
В5. Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если наклонные относятся как 1:2, а проекции наклонных равны 1см и 7см.
Часть с.
С1. Найдите объём тела, образованного вращением вокруг оси ОХ, фигуры ограниченной линиями у=х2+2 ; у=1 ; х=0 ; х=2.
С2. В правильной четырёхугольной усеченной пирамиде стороны оснований 8м и 2м. Высота равна 4м. Найдите полную поверхность.
С3. Полуцилиндрический свод подвала имеет 6м длины и 5,8 м в диаметре. Найдите полную поверхность подвала.
Преподаватель Т.М. Леденева