
- •Теория вероятности и математическая статистика
- •Вариант 1 (а, ю).
- •Построить гистограмму относительных частот.
- •Вариант 2 (б, я).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 3 (в, э).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 4 (г, у).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 5 (д, т).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 6 (е, х).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 7 (з, щ).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 8 (и, ф).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 9 (к, ц).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 10 (о, л).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 11 (м, п).
- •4) Дано распределение дискретной случайной величины X:
- •Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 12 (н, ж).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 13 (р, ш).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 14 (с, ч).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
Построить гистограмму относительных частот.
7) Найти несмещенную выборочную дисперсию на основании данного распределения выборки:
|
10 |
14 |
16 |
22 |
|
13 |
24 |
14 |
9 |
Вариант 10 (о, л).
1) В партии из 12 изделий 5 изделий имеют скрытый дефект. Какова вероятность того, что из взятых наугад 4 изделий 2 изделия являются дефектными?
2) Обувной магазин продал 200 пар обуви. Вероятность того, что в магазин будет возвращена бракованная пара равна 0,01. Найти вероятность того, что из проданных пар обуви будет возвращено не более трех.
3) На сборочное предприятие поступили однотипные комплектующие с трех заводов в количестве: 15 - с первого завода, 25 - со второго, 30 - с третьего. Вероятность качественного изготовления изделий на первом заводе равна 0,9, на втором – 0,8, на третьем – 0,7. Какова вероятность того, что взятое случайным образом изделие будет качественным?
4) Дано распределение дискретной случайной величины X:
|
-3 |
2 |
3 |
5 |
|
0,4 |
0,3 |
0,2 |
|
Найти: , математическое ожидание и среднее квадратичное отклонение.
5) Непрерывная случайная величина имеет нормальное распределение. Ее математическое ожидание равно 30, среднее квадратичное отклонение равно 1. Найти вероятность того, что в результате испытания случайная величина примет значение в интервале (27, 32).
6) Выборка задана интервальным вариационным рядом
-
i
mi
1
5 10
2
2
10 15
14
3
15 20
11
4
20 25
9
5
25 30
4
Построить гистограмму относительных частот.
7) Найти несмещенную выборочную дисперсию на основании данного распределения выборки:
|
3 |
6 |
8 |
14 |
|
8 |
14 |
10 |
18 |
Вариант 11 (м, п).
1) В партии из 30 изделий 10 изделий имеют скрытый дефект. Какова вероятность того, что из взятых наугад 5 изделий 3 изделия являются дефектными?
2) Предприятие обеспечивает регулярный выпуск продукции при безотказной поставке комплектующих от двух смежников. Вероятность отказа в поставке продукции от первого из смежников равна 0, 05, от второго – 0,08. Найти вероятность сбоя в работе предприятия.
3) На сборочное предприятие поступили однотипные комплектующие с трех заводов в количестве: 20 - с первого завода, 35 - со второго, 35 - с третьего. Вероятность качественного изготовления изделий на первом заводе равна 0,9, на втором – 0,8, на третьем – 0,7. Какова вероятность того, что взятое случайным образом изделие будет качественным?