
- •Теория вероятности и математическая статистика
- •Вариант 1 (а, ю).
- •Построить гистограмму относительных частот.
- •Вариант 2 (б, я).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 3 (в, э).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 4 (г, у).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 5 (д, т).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 6 (е, х).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 7 (з, щ).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 8 (и, ф).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 9 (к, ц).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 10 (о, л).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 11 (м, п).
- •4) Дано распределение дискретной случайной величины X:
- •Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 12 (н, ж).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 13 (р, ш).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
- •Вариант 14 (с, ч).
- •4) Дано распределение дискретной случайной величины X:
- •6) Выборка задана интервальным вариационным рядом
- •Построить гистограмму относительных частот.
Построить гистограмму относительных частот.
7) Найти несмещенную выборочную дисперсию на основании данного распределения выборки:
|
16 |
20 |
22 |
30 |
|
14 |
26 |
17 |
3 |
Вариант 7 (з, щ).
1) В партии из 30 изделий 4 изделия имеют скрытый дефект. Какова вероятность того, что из взятых наугад 3 изделий 2 изделия являются дефектными?
2) Найти вероятность поражения цели при залповой стрельбе отделением из 5 солдат, если вероятность попадания в цель каждым солдатом составляет 0,5.
3) На сборочное предприятие поступили однотипные комплектующие с трех заводов в количестве: 25 - с первого завода, 15 - со второго, 40 - с третьего. Вероятность качественного изготовления изделий на первом заводе равна 0,9, на втором – 0,8, на третьем – 0,7. Какова вероятность того, что взятое случайным образом изделие будет качественным?
4) Дано распределение дискретной случайной величины X:
|
-3 |
2 |
3 |
5 |
|
0,3 |
0,3 |
0,2 |
|
Найти: , математическое ожидание и среднее квадратичное отклонение.
5) Непрерывная случайная величина имеет нормальное распределение. Ее математическое ожидание равно 24, среднее квадратичное отклонение равно 1. Найти вероятность того, что в результате испытания случайная величина примет значение в интервале (20, 26).
6) Выборка задана интервальным вариационным рядом
-
i
mi
1
20 22
4
2
22 24
6
3
24 26
10
4
26 28
4
5
28 30
6
Построить гистограмму относительных частот.
7) Найти несмещенную выборочную дисперсию на основании данного распределения выборки:
|
4 |
8 |
10 |
14 |
|
12 |
24 |
38 |
26 |
Вариант 8 (и, ф).
1) В партии из 16 изделий 4 изделия имеют скрытый дефект. Какова вероятность того, что из взятых наугад 3 изделий 2 изделия являются дефектными?
2) В магазине имеются 10 женских и 6 мужских шуб. Для анализа качества отобрали 3 шубы случайным образом. Определить вероятность того, что среди отобранных шуб окажутся только мужские или только женские шубы.
3) На сборочное предприятие поступили однотипные комплектующие с трех заводов в количестве: 45 - с первого завода, 35 - со второго, 10 - с третьего. Вероятность качественного изготовления изделий на первом заводе равна 0,9, на втором – 0,8, на третьем – 0,7. Какова вероятность того, что взятое случайным образом изделие будет качественным?