
- •Содержание
- •Введение
- •Правила выполнения лабораторных работ
- •Подготовка к работе
- •Порядок выполнения
- •Оформление отчета
- •Защита лабораторной работы
- •Лабораторная работа № 1. Обработка результатов измерений с многократными наблюдениями
- •Описание измерительной схемы цифрового омметра
- •Погрешности измерения цифровым омметром
- •Порядок выполнения работы
- •Обработка результатов наблюдений Определение результата измерения
- •Определение среднеквадратической погрешности ряда наблюдений
- •Определение среднеквадратической погрешности результата измерения
- •Построение гистограммы распределения погрешностей
- •Вычисление доверительного интервала погрешности результата наблюдения и результата измерения
- •Запись результата отдельного наблюдения и результата измерения
- •Оформление отчета
- •Контрольные вопросы
- •Список литературы
- •Лабораторная работа № 2. Измерение постоянных токов и напряжений
- •Принцип действия и схемы включения магнито- электрического измерительного механизма. Погрешности измерения тока и напряжения
- •Опыт I. Поверка магнитоэлектрического микроамперметра
- •Порядок выполнения опыта
- •Опыт 2. Расширение пределов измерения магнитоэлектрического прибора по току
- •Порядок выполнения опыта
- •Опыт 3. Расширение пределов измерения магнитоэлектрического прибора по напряжению
- •Порядок выполнения опыта
- •Опыт 4. Выбор прибора для измерения напряжения
- •Порядок выполнения опыта
- •Оформление отчета
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 3. Измерения при помощи комбинированного прибора
- •Особенности схем включения комбинированного прибора
- •Опыт 1. Измерение параметров блока питания
- •Порядок выполнения опыта
- •Опыт 2. Измерение сопротивлений
- •Порядок выполнения опыта
- •Опыт 3. Исследование логических элементов
- •Порядок выполнения опыта
- •Оформление отчета
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 4. Измерения с помощью цифрового частотомера
- •Методика построения цифровых счетчиков импульсов
- •Описание лабораторного макета
- •Опыт 1. Исследование работы счетчика импульсов
- •Порядок выполнения опыта
- •Краткая характеристика цифрового частотомера
- •Опыт 2. Измерение частоты синусоидальных или импульсных напряжений
- •Порядок выполнения опыта
- •Опыт 3. Измерение периода электрических колебаний
- •Порядок выполнения опыта
- •Опыт 4. Измерение отношения частот двух сигналов
- •Порядок выполнения опыта
- •Содержание отчета
- •Контрольные вопросы
- •Список литературы
- •Лабораторная работа № 5. Измерения при помощи электронного осциллографа
- •Описание структурной схемы и блоков электронного осциллографа
- •Описание лабораторной установки
- •Опыт 1. Измерение параметров импульсных периодических сигналов
- •Порядок выполнения опыта
- •Опыт 2. Измерение динамических характеристик ферромагнитных материалов осциллографическим методом
- •Порядок выполнения опыта
- •Содержание отчёта
- •Контрольные вопросы
- •Список литературы
- •Лабораторная работа № 6. Поверка однофазного счётчика активной энергии
- •Описание схемы измерительной установки
- •1 Индукционный счетчик активной энергии
- •2 Ваттметр электродинамической системы
- •3 Измерительные трансформаторы тока (итт) и напряжения (итн)
- •Опыт 1. Поверка индукционного счётчика энергии
- •Порядок выполнения опыта
- •Содержание отчёта
- •Контрольные вопросы
- •Литература
Запись результата отдельного наблюдения и результата измерения
1 Представить результат i-го наблюдения в виде измеренного значения Ri и случайной погрешности измерения, определенной с доверительной вероятностью P = 0,997 (систематической погрешностью пренебречь):
Roi = Ri 3, (P = 0,997).
Выразить результат i-го наблюдения в цифровой форме, приняв погрешность округления числа, выражающего погрешность измерения, не более 15%. Это означает, что абсолютные погрешности, имеющие в старшем разряде цифры 1 или 2, должны записаться двумя цифрами, например: 0,12; 2,5; 0,016, погрешности имеющие в старшем значащем разряде цифры 3, 4, 5, 6, 7, 8, 9, должны записываться одной цифрой, например: 4; 3; 0,4; 0,08. Число, выражающее наиболее достоверное значение Roi, записать таким количеством значащих цифр, которое соответствует погрешности измерения. Например, при Ri = 101,595 Ом; Zi= ±0,3 Ом; Roi = (101,60,3) Ом. При этом погрешность округления Ri будет всегда, по крайней мере, на порядок меньше погрешности наблюдения.
2 Представить результат измерения Ro в цифровой форме в виде:
Ro = Rср 3A, (P = 0,997).
Сравнить результаты i-го наблюдения и результат измерения, внести их в табл. 1.1.
Оформление отчета
В отчете должны быть приведены: принципиальная электрическая схема измерительного моста омметра (см. рис.1.1); таблицы экспериментальных данных (табл. 1.1, 1.2, 1.4); построенные по данным табл. 1 кривые распределения погрешностей (см. рис. 1.3).
Контрольные вопросы
1. Объясните принцип действия цифрового омметра.
2. Запишите условие равновесия одинарного моста.
3. Укажите возможные источники погрешностей измерений сопротивлений цифровым омметром.
4. Дайте определение систематической и случайной погрешности измерения.
5. Назовите способы уменьшения систематической и случайной погрешностей.
6. Какая разница между абсолютной и относительной погрешностью измерения?
7. Как определить результат измерения при многократных наблюдениях?
8. Что собой представляет остаточная погрешность?
9. В чем состоит отличие между среднеквадратической погрешностью результата наблюдения и результата измерения?
Список литературы
1. Основы метрологии и электрические измерения / под ред. Е.М. Душина. – Л: Энергоатомиздат, 1987, С. 27 – 35, 253, 420 – 423.
2. Малиновский В.Н. Электрические измерения. – М.: Энергоатомиздат, 1985. С. 45 – 61, 227 – 230.
3. Атамалян Э.Г. Приборы и методы измерения электрических величин. – М.: Высшая школа, 1982, С. 22 – 27, 169 – 171.
Лабораторная работа № 2. Измерение постоянных токов и напряжений
Цель работы: ознакомиться с принципом действия и схемами включения магнитоэлектрического механизма; приобрести навыки поверки микроамперметра и определения его класса точности; научиться расширять пределы измерения приборов по току и напряжению; приобрести навыки работы с цифровым вольтметром; ознакомиться с методикой выбора измерительных приборов для измерения тока или напряжения с заданной погрешностью.
Принцип действия и схемы включения магнито- электрического измерительного механизма. Погрешности измерения тока и напряжения
В основе работы магнитоэлектрических приборов лежит принцип взаимодействия тока катушки с полем постоянного магнита. Уравнение шкалы этих приборов имеет вид:
.
где – угол отклонения стрелки; I – измеряемый ток; Si – чувствительность к току; Ci=1/Si – постоянная прибора или цена деления, определяющая ток, приходящийся на единицу угла отклонения.
Из уравнения следует, что при перемене направления тока в катушке направление отклонения подвижной части меняется на обратное. Для получения отклонения указателя в нужную сторону необходимо при включении прибора соблюдать указанную на приборе полярность.
Измерительные механизмы (ИМ) магнитоэлектрических амперметров и вольтметров принципиально не различаются между собой. В зависимости от назначения прибора (для измерения тока или напряжения) меняется его измерительная цепь.
При измерении малых токов (от нескольких мкА до 50 мА) ИМ включается в цепь последовательно с нагрузкой (pиc. 2.I,a).
Для измерения токов от 50 мА до 10000 А пределы измерения по току магнитоэлектрического ИМ расширяют при помощи шунта (рис.2.1, б). В вольтметрах последовательно с ИМ включается добавочный резистор, и прибор подключают к участку цепи, где требуется измерить напряжение (рис. 2.1, в).
U
U
В задачу измерений входит не только нахождение самой величины, но также и оценка допущенной при измерении погрешности.
Абсолютная погрешность измерения ΔХ выражается в единицах измеряемой величины и равна разности между измеренным значением X и его действительным значением X0:
ΔХ=X – X0.
Относительная погрешность измерения δ обычно выражается в процентах и представляет собой отношение абсолютной погрешности ΔХ к действительному значению измеряемой величины X0:
.
Точность измерения характеризуется величиной относительной (а не абсолютной) погрешности измерения. В работе рассматриваются аппаратурные или инструментальные погрешности, определяемые конструкцией, схемой, выполнением, градуировкой прибора и его состоянием в процессе эксплуатации, а также погрешности взаимодействия, возникающие из-за потребляемой приборами мощности.
Погрешность взаимодействия при измерении напряжения вольтметром вызвана уменьшением сопротивления участка цепи, к которому подключен вольтметр, и снижением напряжения на измеряемом участке. Величина этой погрешности вольтметра равна
, (2.I)
где Rv – сопротивление вольтметра; Rэкв – эквивалентное сопротивление цепи относительно зажимов, к которым подключен вольтметр, при замкнутых накоротко источниках питания.
Для уменьшения погрешности взаимодействия необходимо выбирать амперметры с возможно малым, а вольтметры – с возможно большим сопротивлением.