Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
n1 (1).doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.1 Mб
Скачать

Опыт 2. Измерение динамических характеристик ферромагнитных материалов осциллографическим методом

Динамическими характеристиками магнитных материалов называют характеристики, полученные в переменных магнитных полях. Динамические характеристики в значительной мере зависят не только от качества самого материала, но и от ряда других факторов: формы и размеров образца, формы кривой и частоты изменения намагничивающего поля и т. д. Поэтому динамические характеристики являются по существу характеристиками не материала, а конкретного образца и по ним можно судить о пригодности образца для конкретных условий намагничивания. К основным динамическим характеристикам магнитных материалов относят динамические петли гистерезиса и динамические кривые намагничивания.

На рис. 5.7,а показано семейство петель гистерезиса, полученных при различных значениях максимальных напряжённостей магнитного поля. Петля гистерезиса, соответствующая насыщению материала, называется предельной динамической петлёй. В справочниках обычно приводят симметричные предельные петли гистерезиса для различных материалов. По предельной петле гистерезиса можно найти максимальное значение индукции Bm и напряжённости Hm, а также остаточную индукцию Br (при H=0) и коэрцитивную силу Hc, т.е. напряжённость поля, при которой B=0.

Площадь петли гистерезиса пропорциональна энергии, затраченной на перемагничивание вещества и вихревые токи.

Другая характеристика – основная динамическая кривая намагничивания представляет собой геометрическое место вершин симметричных петель гистерезиса и строится путём соединения вершин частных петель гистерезиса. По виду основной кривой намагничивания можно определить магнитные проницаемости для различных значений H.

Кривая относительной магнитной проницаемости μr = B/μ0H, где μ0 = 4 π 10–7 Гн/м является магнитной постоянной, показана на рис. 5.7,б.

Начальный участок кривой соответствует области начальной

магнитной проницаемости , которая графически определяется как tg α н с учётом масштабов по осям. Аналогично находится максимальная магнитная проницаемость μ r m по tg α m.

По виду основной кривой намагничивания и петли гистерезиса, а также по значениям Bm, Hm, Br, Hc можно судить о свойствах данного магнитного материала и области его практического применения. Материалы с узкой петлёй гистерезиса и большим значением Br, являющиеся магнитомягкими, целесообразно применять, например, для изготовления магнитопроводов измерительных механизмов, у которых рабочее магнитное поле создаётся измеряемым током. Это уменьшит погрешности из-за гистерезиса и нелинейности кривой намагничивания (ферродинамические, индукционные приборы). Материалы с широкой петлёй гистерезиса, большой коэрцитивной силой Hc относятся к магнитотвёрдым и используются для изготовления постоянных магнитов.

Основные параметры магнитомягких материалов, наиболее часто используемых в технике, приведены в табл. 5.2.

Осциллографический метод исследования магнитных материалов на переменном токе удобен тем, что позволяет визуально наблюдать динамические петли, а также производить измерение магнитных характеристик в широком диапазоне частот.

Таблица 5.2

Материал

Bm,

Тл

Hm,

А/М

Br,

Тл

Hc,

А/М

μr нач

μr макс

Электро-техническая сталь

1,4÷1,8

70÷350

1,1÷1,6

10÷50

250÷800

5000÷33000

Железо-никелиевые сплавы

0,4÷1,6

4÷200

0,3÷1,4

0,5÷30

1700÷300000

160000÷4450000

Магнитно-мягкие ферриты

0,1÷0,4

30÷10000

0,05÷0,3

4÷2000

5÷35000

100÷30000

Схема установки для определения магнитных характеристик осциллографическим методом приведена на рис.5.8.

Установка состоит из осциллографа, на вход вертикального отклонения которого Y подано напряжение с выхода интегрирующей цепочки, а на вход горизонтального отклонения Х – напряжение, снимаемое с сопротивления Rэ. Испытуемый образец кольцевой формы содержит намагничивающую и измерительную обмотки. В цепь намагничивающей обмотки включён амперметр и сопротивление Rэ, к зажимам измерительной обмотки – интегрирующая цепочка RиCи. Автотрансформатор обеспечивает регулирование тока через намагничивающую обмотку. На Х вход осциллографа подаётся напряжение UHt, пропорциональное намагничивающему току (по закону Ома):

,

а ток iнам пропорционален напряжённости магнитного поля (по закону полного тока):

,

где l ср – средняя длина магнитной линии образца.

Таким образом, мгновенное значение напряжения UHt пропорционально мгновенному значению напряжённости магнитного поля образца H t:

.

В измерительной обмотке наводится ЭДС, пропорциональная производной от индукции по времени

,

где S – площадь поперечного сечения образца.

Выходное напряжение интегрирующей цепочки оказывается пропорциональным мгновенному значению индукции

,

где и = Rи Cи – постоянная времени интегрирования.

Поэтому электронный луч осциллографа опишет на экране кривую, являющуюся динамической петлёй гистерезиса.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]