
- •Билет 1
- •Общие сведения об инженерных изысканиях, их видах и особен-ях
- •2.(29)Координатные системы отсчета, используемые в геодезической практике на территории Республики Беларусь.
- •3.(18)Наблюдения за горизонтальными смещениями сооружений
- •1.Состав инженерно-геодезических изысканий.Техническое задание
- •2. Определение высоты геоида над референц- эллипсоидом в требуемой системе отсчета координат с использованием модели геоида egm2008
- •3.Геодезические работы при устройстве подкрановых путей
- •Геодезические работы при эксплуатации подкрановых путей
- •Билет 3
- •1. Гоедезическое обеспечение геологических, гидрогеологических изысканий и геофизические методы разведки
- •2. Аномальное гравитационное поле.
- •3. Методы створных измерений (подвижной марки, малых углов и т.Д.)
- •2. Методы измерения ускорения силы тяжести. Приборы. Классификация статических гравиметров.
- •3. Методы определения ширины колеи. Методы определения непрямолинейности рельсовых осей.
- •Билет 5
- •1.Назначение, виды и особенности построения опорных геодезических сетей.
- •2.Общая структура глобальных навигационных спутниковых систем
- •3. Приборы и оборудование для створных измерений. Анализ источн. Погреш
- •Билет 7
- •3.Определение геометрических параметров резервуаров для нефти и нефтепродуктов.
- •Билет 8
- •Билет 9
- •1.Геодезическая строительная сетка, назначение и требования к точности.
- •2.Тригонометрическое нивелирование. Коэффициент рефракции.
- •3.Исполнительные съемки строительных конструкций и оборудования.
- •Билет 10
- •Технология создания строительных сеток.
- •2.Геодинамические полигоны аэс.
- •Исполнительная съемка инженерных коммуникаций.
- •Билет 11
- •1. Системы координат в инженерно-геодезических работах
- •1) Система плоских прямоугольных координат.
- •2)Местная (условная) система прямоугольных координат.
- •2. Оценка точности функции от результатов измерений.
- •Виды прецизионных сооружений и требования к точности их установки в проектное положение.
- •Билет 12
- •1, Высотные инженерно-геодезические сети.
- •2. Обработка одной многократно измеренной равноточной величины.
- •3, Особенности создания плановой и высотной основы для прецизионных сооружений.
- •Билет 13.
- •Билет 14
- •Характеристика крупномасштабных планов. Точность, детальность и полнота планов
- •Уравнительные вычисления. Общие положения.
- •Определение геометрических параметров резервуаров для нефти и нефтепродуктов.
- •Билет 15
- •Методы определения ширины колеи и непрямолинейности рельсовых осей
- •11.2 Исполнительная съемка подкрановых путей
- •Ошибки измерений их классификация и свойства.
- •Билет 16
- •Методы съемки застроенной и незастроенной территории
- •Законы распределения и основные характеристики точности. Доверительный интервал.
- •Способы ориентирования подземных выработок. Передача высот в подземную выработку.
- •Билет 17.
- •1. Тахеометрическая съёмка, выполняемая электронным тахеометром.
- •2. Параметрический способ уравнивания. Оценка точности.
- •3. Состав и содержание инженерно-геодезических работ при эксплуатации инженерных сооружений.
- •Билет 18.
- •1. Основные процессы, выполняемые при создании плана комбинированным и стереофотограмметрическим методами.
- •18.2. Погрешности геодезических измерений и методы их минимизации.
- •18.3. Геодезические методы определения кренов башенных сооружений
- •Билет №19
- •3. Особенности применения тригонометрического нивелирования для определения осадок.
- •2.Средняя квадратическая ошибка функции коррелируемых результатов измерений
- •1.Применение фотограмметрии в изысканиях и строительстве инженерных сооружений линейного типа
- •Билет 20
- •Методы съемки подземных коммуникаций
- •Методы съёмки.
- •Коррелатный способ уравнивания. Оценка точности.
- •Анализ устойчивости исходной основы при наблюдении за осадками сооружений геодезическими методами.
- •Билет 21
- •Индуктивный метод поиска подземных коммуникаций
- •Средняя квадратическая ошибка функции некоррелируемых результатов измерений.
- •Способы геодезического обмера зданий. Планово-высотная съемка элементов здания.
- •Билет 22
- •Элементы и категории трасс. Параметры и правила трассирования (камеральное и полевое трассирование)
- •Вес функции и вес измерений. Ошибка единицы веса.
- •Геодезические методы определения осадок. Оценка точности характеристик осадок.
- •Билет 23
- •1.Способы установки и выверки конструкций и оборудования по вертикали.
- •2.Камеральное трассирование по топографическим картам.Состав работ,способы.
- •3.Виды проекций,их осн.Хар-ки.Проекция Гауса-Крюгера.
- •2. По характеру искажений (свойствам изображения);
- •3.По виду нормальной картографической сетки изображений меридианов и параллелей;
- •Билет 24
- •Полевое трассирование. Вынесение проекта трассы в натуру.
- •Позиционные определения посредством гнсс
- •Способы плановой установки и выверки конструкций и оборудования.
- •Билет №25
- •Круговые кривые, их элементы и главные точки.
- •Приведение измерений к центрам геодезических пунктов.
- •3. Гидротехнические сооружения. Геодезическое обеспечение проектирования и строительства гэс.
- •1. Детальная разбивка кривых способом прямоугольных координат
- •2. Технические требования и способы высокоточных измерений горизонтальных углов
- •3. Высотное обоснование тоннелей
- •Билет 28
- •Билет 29
- •1. Составление продольного профиля трассы. Вычисление отметок точек «нулевых работ»
- •2. Поверки и исследования нивелиров и нивелирных реек
- •Контрольные испытания высокоточных нивелиров
- •3 Применение метода «свободной станции» при разбивочных работах.
- •Билет 30
- •1) Мостовые переходы. Состав работ при изысканиях мостовых переходов. Создание мостовой разбивочной основы.
- •2) Высокоточное геометрическое нивелирование. Источники ошибок и меры по ослаблению их влияния.
- •3) Способы передачи осей и отметок на монтажные горизонты.
- •Билет 32
- •Геодезические работы при изысканиях гидротехнических сооружений на разных стадиях проектирования.
- •Гидротехнические сооружения проектируют в две стадии:
- •3.Способы разбивки основных осей сооружений. Методы их закрепления на местности.
- •Билет33
- •1.Геодезические работы при проектировании каналов и мелиоративных систем.
- •2.Источники ошибок гнсс определений.
- •3.Геодезические разбивочные работы при строительстве гражданских и промышленных зданий (нулевой цикл).
Билет №25
Круговые кривые, их элементы и главные точки.
Разбивка гла1вных точек круговых кривых
В
плане ось дороги представляет собой
сочетание прямых и кривых участков. В
каждой вершине поворота трассы две
смежные линии ее сопрягаются кривой.
Кривые могут иметь форму круговой или
суммарной кривой. Суммарная кривая
состоит из двух переходных кривых и
круговой кривой.
Рассмотрим круговую кривую (рисунок 1.6). Круговая кривая – это дуга окружности, вписанная в угол, образованный двумя смежными линиями трассы. Круговая кривая имеет три главные точки и шесть элементов.
Главными точками круговой кривой являются начало круговой кривой (НКК), конец круговой кривой (ККК) и середина круговой кривой (СКК).
На плане и на местности эти точки могут быть получены, если известны следующие элементы кривой:
1 – угол поворота трассы φ;
2 – радиус круговой кривой R;
3 – расстояние от вершины угла поворота ВУП до начала или конца кривой, которое называется тангенс Т;
4 – длина кривой, расстояние от ее начала до ее конца К;
5 – расстояние от вершины угла поворота до середины кривой, которое называется биссектриса кривой Б;
6 – домер, показывающий, на сколько путь от начала до конца кривой по касательной больше, чем по кривой Д.
Угол поворота трассы (φ) измеряют при трассировании, а величину радиуса кривой (R) выбирают в соответствии с техническими условиями.
Остальные элементы круговой кривой могут быть определены из прямоугольного треугольника (О – НКК – ВУП) на рисунке 1.6 по следующим формулам:
Т = R tg φ / 2,
К = π R φ0 / 1800 ,
Б = R / cosφ / 2 – R,
Д = 2Т – К.
По вышеприведенным формулам составлены таблицы, в которых по известным φ и R находят элементы Т, К, Б и Д (например, Власов Д. И., Логинов В. Н. “Таблицы для разбивки кривых на железных дорогах” [3]).
Так, например, для φ = 24030′; R = 400 м; Т = 86,85 м; К = 171,04 м; Б = 9,32 м; Д = 2,65 м.
На местности начало и конец кривой получают, откладывая величины тангенса от вершины угла поворота (ВУП) по линиям трассы, а середину кривой (СКК) – отложением величины Б по биссектрисе угла (β/2):
β/2 = (180º – φº) / 2.
Этот угол откладывают при помощи теодолита. Точка О на местности не определяется и не обозначается ( см. рисунок 1.6). Для облегчения разбивки длинных кривых их целесообразно разделить на несколько равных частей, называемых кратными кривыми.
Чтобы определить элементы круговых кривых для больших углов поворота при любой величине радиуса, например R = 600 м, можно определить из таблицы 1 [3] элементы для радиуса R = 100 м и найденные значения умножить на отношение радиусов 600:100 = 6, так как величины Т, К, Б, Д пропорциональны радиусу кривой. Это видно из формул (1.3).
Приведение измерений к центрам геодезических пунктов.
При угловых измерениях на каждом пункте необходимо, чтобы ось вращения теодолита J, установленного на столике сигнала, и ось симметрии визирного цилиндраV находились на одной отвесной линии, проходящей через центр пункта в точке O (рис. 1.) Однако в действительности такого совпадения нет. Поэтому перед началом наблюдений на пункте и после их окончания определяют элементы центрировки теодолита (е, Ө) и элементы редукции визирной цели (е1, Ө1), называемые элементами приведения, а затем вычисляют поправки в измеренные направления за центрировку и редукцию.
Для определения элементов приведения над центром пункта устанавливают облегчённую мензулу или столик, на горизонтальную поверхность которого прикрепляют центрировочный лист и стрелкой показывают направление на север. Затем с помощью вспомогательного теодолита, установленного на расстоянии примерно в полтора раза больше, чем высота геодезического сигнала, проектируют на этот лист ось вращения теодолита и ось визирного цилиндра. Проектирование выполняют с трёх установок теодолита, размещённых по азимуту через 120˚ (при КП и КЛ). Аналогичным образом при трёх установках теодолита проектируют центр пункта на этот лист. При этом образуется треугольник погрешностей, стороны которого не должны превышать: 3 мм при проектировании центра пункта, 5 мм – при проектировании оси теодолита и 10 мм – при проектировании оси визирной цели. При соблюдении этих допусков искомые точки должны находиться в центре соответствующего треугольника погрешностей.
Из точек J и V, в которых находятся теодолит и визирная цель, проводят направления на начальный пункт А и какой-либо пункт В. Точки J и V соединяют с точкой О и линейкой измеряют с точностью до 1 мм линейных элемент центрировки е=OJ и линейный элемент редукции е1=OJ. В точках J и V большим транспортиром с точностью 15΄ измеряют углы Ө(ӨА, ӨВ) и Ө1(ӨА1, ӨВ1) ориентирующие линейные элементы е и е1 относительно направлений на пункты А, В и т. д. Углы Ө и Ө1 отсчитывают от направления на центр пункта по ходу часовой стрелки. Кроме того, транспортиром измеряют на центрировочном листе угол между направлениями на пункты А и В и сравнивают с его значением, полученным из измерений теодолитом для контроля правильности проведения направлений на пункты А и В. Расхождения в значениях угла допускаются до 1˚.
Если линейные элементы приведения велики и значительно превышают установленные инструкцией, их определяют аналитическим способом.
Яковлев «Высшая геодезия», с. 240.
Поправки за центрировку и редукцию:
;
.
Поправки с и r в триангуляции и полигонометрии 1-2 классов вычисляют с точностью до 0,001˝, а на пунктах 3 и 4 классов до 0,01˝.