
- •Системы управления базами данных введение
- •1. Компоненты субд
- •1.1. Типы и структуры данных
- •1.1.1. Основные типы данных.
- •1.1.2. Обобщенные структуры или модели данных.
- •1.2. Методы доступа к данным.
- •1.2.1.Методы поиска по дереву.
- •1.2.2.Хеширование.
- •2. Представление данных
- •2.1. Представление данных с помощью модели "сущность-связь".
- •2.1.1.Назначение модели.
- •2.1.2.Элементы модели.
- •2.2.Диаграмма "сущность-связь".
- •2.3. Целостность данных.
- •3. Дореляционные модели представления данных.
- •3.1.Иерархическая модель данных.
- •3.1.1.Структура данных.
- •3.1.2.Операции над данными, определенные в иерархической модели:
- •3.1.3.Ограничения целостности.
- •3.2.Сетевая модель данных
- •3.2.1.Структура данных.
- •3.2.2.Операции над данными.
- •3.2.3.Ограничения целостности.
- •4. Реляционный подход к представлению данных
- •4.1.Реляционная модель данных
- •4.1.1.Структура данных.
- •4.1.2.Свойства отношений.
- •4.2.Теория нормальных форм.
- •4.2.1.Функциональные зависимости.
- •4.2.5. Bcnf - нормальная форма Бойса-Кодда.
- •4.2.6. Многозначные зависимости и четвертая нормальная форма (4nf).
- •4.2.7. Зависимости по соединению и пятая нормальная форма (5nf).
- •4.3.Ограничения целостности
- •4.3.1.Целостность сущностей.
- •4.3.2.Целостность ссылок
- •4.4. Реляционная алгебра
- •4.4.1. Операции обработки кортежей.
- •4.4.2. Операции обработки отношений.
- •4.5. Реляционное исчисление.
- •4.6.Язык sql
- •4.7. Вопросы практического программирования.
- •4.8.Навигационный подход к манипулированию данными и персональные субд.
- •4.9.Транзакции, блокировки и многопользовательский доступ к данным.
- •4.10. Определение степени соответствия субд реляционной модели.
- •5. Проектирование реляционных баз данных.
- •5.1. Этапы проектирования данных
- •5.2.Инструментальные средства проектирования информационных систем.
- •5.4.Концептуальное моделирование.
- •5.5.Правила порождения реляционных отношений из модели "сущность-связь"
- •5.5.1. Бинарные связи
- •5.5.3. Иерархические связи.
- •5.6. Проектирование реляционной базы данных на основе декомпозиции универсального отношения.
- •5.7.Обзор некоторых case-систем.
- •5.7.1. Power Designer компании Sybase.
- •5.7.2. Silverrun компании Silverrun Technologies Ltd.
- •5.7.3. BpWin и erWin компании LogicWorks.
- •5.7.4. Designer/2000 компании Oracle.
- •6. Классификация субд.
- •6.1.Ограничения реляционных баз данных.
- •6.2.Постреляционные субд.
- •6.3.Объектно-ориентированные субд.
- •6.3.1. Объектно-ориентированная парадигма.
- •6.3.2. Объектно-ориентированные субд.
- •6.3.3. Стандарт odmg.
- •6.3.4. Объектные расширения реляционных субд. Язык sql-3.
- •6.4. Объектно-реляционные субд.
- •6.5.Нечисловая обработка и ассоциативные процессоры.
- •7. Представление данных по принципу технологии "клиент-сервер".
- •7.1.Архитектура "клиент-сервер".
- •7.1.1. Основные понятия.
- •7.1.2. Модели взаимодействия клиент-сервер.
- •7.1.3. Мониторы транзакций.
- •7.2.Обработка распределенных данных.
- •7.3.Структура сервера базы данных.
- •8.Базы знаний.
- •8.1. Понятие системы баз знаний.
- •8.2.Структура и функции системы баз знаний.
- •8.3.Инструментальные средства построения систем баз знаний.
6.5.Нечисловая обработка и ассоциативные процессоры.
Компьютеры, как известно, были созданы для удовлетворения потребностей исследователей, решавших вычислительные задачи. Однако, со временем все чаще и чаще они стали использоваться для решения невычислительных задач, а именно для хранения, поиска и преобразования документов (информации). Когда компьютеры стали широко применяться в таких задачах, обнаружилась неприспособленность их традиционной (фон-неймановской) архитектуры для этих целей.
Архитектура компьютера разработана Дж. Фон Нейманом.
Центральный процессор связан каналом с памятью, представляющей набор ячеек, каждая из которых характеризуется адресом (последовательным номером). В ячейках хранятся команды (вычислительные, а также условного и безусловного переходов на другую ячейку), которые процессор последовательно извлекает и обрабатывает. Некоторые команды могут требовать каких-либо данных, которые также хранятся в ячейках памяти. Ссылка на данные осуществляется при этом при помощи указания адресов хранящих их ячеек. Таким образом, способы построения запоминающих устройств и способы обращения к ним центрального процессора у современных ЭВМ ориентированы на числовую обработку.
При обращении к массиву компьютер определяет начальный адрес массива и по значению индекса выбирает его конкретный элемент (адрес элемента = начальный адрес + смещение).
Если имена выбираются из файла не по адресу, а по содержимому полей, то способ адресации называется ассоциативным обращением или ассоциативной адресацией.
Поскольку в современных компьютерах для нечисловой обработки используется та же архитектура, что и для числовой, используются методы эмуляции ассоциативного доступа - создается специальная таблица для перевода ассоциативного запроса в соответствующий адрес - индекс.
В общем виде архитектура нечисловой обработки должна удовлетворять следующим требованиям:
ассоциативная память с ориентацией на обработку наборов данных
специализированный набор команд с непосредственной аппаратной поддержкой
параллелизм и использование процессоров в памяти:
параллельное выполнение таких задач как "повысить зарплату всем служащим"
процессор в памяти - ликвидация канала процессор-память
К сожалению, до настоящего времени не достигнуто больших успехов в создании ассоциативных систем.
7. Представление данных по принципу технологии "клиент-сервер".
7.1.Архитектура "клиент-сервер".
7.1.1. Основные понятия.
Как правило, компьютеры и программы, входящие в состав информационной системы, не являются равноправными. Некоторые из них владеют ресурсами (файловая система, процессор, принтер, база данных), другие имеют возможность обращаться к этим ресурсам. Компьютер (или программу), управляющий ресурсом, называют сервером этого ресурса (файл-сервер, сервер базы данных, вычислительный сервер). Клиент и сервер какого-либо ресурса могут находиться как в рамках одной вычислительной системы, так и на различных компьютерах, связанных сетью.
Основной принцип технологии "клиент-сервер" заключается в разделении функций приложения на три группы:
ввод и отображение данных (взаимодействие с пользователем);
прикладные функции, характерные для данной предметной области;
функции управления ресурсами (файловой системой, базой данных и т.д.)
Поэтому, в любом приложении выделяются следующие компоненты:
компонент представления данных
прикладной компонент
компонент управления ресурсом
Связь между компонентами осуществляется по определенным правилам, которые называют "протокол взаимодействия".