
- •Системы управления базами данных введение
- •1. Компоненты субд
- •1.1. Типы и структуры данных
- •1.1.1. Основные типы данных.
- •1.1.2. Обобщенные структуры или модели данных.
- •1.2. Методы доступа к данным.
- •1.2.1.Методы поиска по дереву.
- •1.2.2.Хеширование.
- •2. Представление данных
- •2.1. Представление данных с помощью модели "сущность-связь".
- •2.1.1.Назначение модели.
- •2.1.2.Элементы модели.
- •2.2.Диаграмма "сущность-связь".
- •2.3. Целостность данных.
- •3. Дореляционные модели представления данных.
- •3.1.Иерархическая модель данных.
- •3.1.1.Структура данных.
- •3.1.2.Операции над данными, определенные в иерархической модели:
- •3.1.3.Ограничения целостности.
- •3.2.Сетевая модель данных
- •3.2.1.Структура данных.
- •3.2.2.Операции над данными.
- •3.2.3.Ограничения целостности.
- •4. Реляционный подход к представлению данных
- •4.1.Реляционная модель данных
- •4.1.1.Структура данных.
- •4.1.2.Свойства отношений.
- •4.2.Теория нормальных форм.
- •4.2.1.Функциональные зависимости.
- •4.2.5. Bcnf - нормальная форма Бойса-Кодда.
- •4.2.6. Многозначные зависимости и четвертая нормальная форма (4nf).
- •4.2.7. Зависимости по соединению и пятая нормальная форма (5nf).
- •4.3.Ограничения целостности
- •4.3.1.Целостность сущностей.
- •4.3.2.Целостность ссылок
- •4.4. Реляционная алгебра
- •4.4.1. Операции обработки кортежей.
- •4.4.2. Операции обработки отношений.
- •4.5. Реляционное исчисление.
- •4.6.Язык sql
- •4.7. Вопросы практического программирования.
- •4.8.Навигационный подход к манипулированию данными и персональные субд.
- •4.9.Транзакции, блокировки и многопользовательский доступ к данным.
- •4.10. Определение степени соответствия субд реляционной модели.
- •5. Проектирование реляционных баз данных.
- •5.1. Этапы проектирования данных
- •5.2.Инструментальные средства проектирования информационных систем.
- •5.4.Концептуальное моделирование.
- •5.5.Правила порождения реляционных отношений из модели "сущность-связь"
- •5.5.1. Бинарные связи
- •5.5.3. Иерархические связи.
- •5.6. Проектирование реляционной базы данных на основе декомпозиции универсального отношения.
- •5.7.Обзор некоторых case-систем.
- •5.7.1. Power Designer компании Sybase.
- •5.7.2. Silverrun компании Silverrun Technologies Ltd.
- •5.7.3. BpWin и erWin компании LogicWorks.
- •5.7.4. Designer/2000 компании Oracle.
- •6. Классификация субд.
- •6.1.Ограничения реляционных баз данных.
- •6.2.Постреляционные субд.
- •6.3.Объектно-ориентированные субд.
- •6.3.1. Объектно-ориентированная парадигма.
- •6.3.2. Объектно-ориентированные субд.
- •6.3.3. Стандарт odmg.
- •6.3.4. Объектные расширения реляционных субд. Язык sql-3.
- •6.4. Объектно-реляционные субд.
- •6.5.Нечисловая обработка и ассоциативные процессоры.
- •7. Представление данных по принципу технологии "клиент-сервер".
- •7.1.Архитектура "клиент-сервер".
- •7.1.1. Основные понятия.
- •7.1.2. Модели взаимодействия клиент-сервер.
- •7.1.3. Мониторы транзакций.
- •7.2.Обработка распределенных данных.
- •7.3.Структура сервера базы данных.
- •8.Базы знаний.
- •8.1. Понятие системы баз знаний.
- •8.2.Структура и функции системы баз знаний.
- •8.3.Инструментальные средства построения систем баз знаний.
6.3.4. Объектные расширения реляционных субд. Язык sql-3.
Попытки совместить средства манипулирования данными реляционной модели и способы описания внешнего мира объектно-ориентированной модели получили развитие в языке SQL-3. Рассмотрим только предлагаемые способы определения данных. Разработчики SQL-3 считают, что характеристики объекта определяется описанием строки таблицы. Поэтому, вводится специальная возможность описания нового типа данных.
На основе нового типа могут быть определены таблицы.
Новые типы допускается использовать и для определения столбцов (т.е. игнорируется требование атомарности атрибутов реляционной модели).
Наследование определяется с помощью фразы under.
В SQL-3 предполагается, что каждый объект имеет уникальный идентификатор - OID, именно он используется при создании ссылок на объекты. Здесь свойства SQL-3 рассмотрены весьма кратко. Более полное представление о них можно получить из литературы, посвященной возможностям СУБД Oracle 8, которая поддерживает данный язык. Областью определения объекта надо считать не строку, а столбец реляционной таблицы.
6.4. Объектно-реляционные субд.
Другой способ объединения возможностей реляционного и объектно-ориентированного подхода к управлению данными предложил известный американский ученый Майкл Стоунбрейкер. Согласно его воззрениям реляционную СУБД нужно просто дополнить средствами доступа к сложным данным. При этом ядро СУБД не требует переработки, как в случае с SQL3, и сохраняет все присущие реляционным системам достоинства. Объектные расширения реализуются в виде надстроек, которые динамически подключаются к ядру. На основе этой идеи под руководством М. Стоунбрейкера в университете Беркли (Калифорния, США) была разработана СУБД Postgres, которая имеет следующие ключевые возможности:
Типы, операторы и методы доступа, определяемые пользователем. Можно определить новый тип данных, необходимые операции над ним, а также метод доступа, поскольку с помощью R-дерева нельзя выполнить двумерный поиск в задаче о перекрывающихся многоугольниках. Здесь целесообразно использовать дерево более высокой размерности (R-дерево) или другие методы.
Поддержка сложных объектов, представляющих собой наборы других объектов.
Перегрузка операторов манипулирования данными.
Создание функций, определяемых пользователем.
Динамическое добавление новых типов данных, операторов, функций и методов доступа. Описание всех этих возможностей создается на языке C и компилируется в объектный файл, который может динамически загружаться сервером СУБД.
Наследование данных и функций.
Использование массивов как значений полей кортежей. Это необходимо, например, для хранения ставки налога, изменяющейся в зависимости от времени года.
Реализация описанных свойств позволила М. Стоунбрейкеру так спозиционировать объектно-реляционные СУБД относительно реляционных и объектно-ориентированных систем:
|
Простые данные |
Сложные данные |
Наличие средств запросов |
Реляционные системы |
Объектно-реляционные системы |
Отсутствие средств запросов |
Файловые системы |
Объектно-ориентированные системы |
Кроме того, Postgres обладает свойствами, которые позволяют назвать его темпоральной СУБД. При любом обновлении записи создается ее новая копия, а предыдущий вариант продолжает существовать вечно. Даже после удаления записи все накопленные варианты сохраняются в базе данных. Можно извлечь из базы данных любой вариант записи, если указать момент или интервал времени, когда этот вариант был текущим. Достижение этих свойств позволило также пересмотреть схемы журнализации и отката транзакций.
Сейчас все вышеописанные функции развиваются в коммерческой СУБД Informix. Тем не менее, проект Postgres продолжается до сих пор, уже международной группой независимых разработчиков. К возможностям СУБД добавлены поддержка SQL, поэтому несколько было изменено название СУБД - теперь это PostgreSQL, оптимизатор запросов на основе генетических алгоритмов и многое другое. При этом PostgreSQL остается свободно распространяемой системой, причем бесплатно можно получить как исходный код, так и бинарные файлы, собранные для платформы ОС Unix.