
- •Системы управления базами данных введение
- •1. Компоненты субд
- •1.1. Типы и структуры данных
- •1.1.1. Основные типы данных.
- •1.1.2. Обобщенные структуры или модели данных.
- •1.2. Методы доступа к данным.
- •1.2.1.Методы поиска по дереву.
- •1.2.2.Хеширование.
- •2. Представление данных
- •2.1. Представление данных с помощью модели "сущность-связь".
- •2.1.1.Назначение модели.
- •2.1.2.Элементы модели.
- •2.2.Диаграмма "сущность-связь".
- •2.3. Целостность данных.
- •3. Дореляционные модели представления данных.
- •3.1.Иерархическая модель данных.
- •3.1.1.Структура данных.
- •3.1.2.Операции над данными, определенные в иерархической модели:
- •3.1.3.Ограничения целостности.
- •3.2.Сетевая модель данных
- •3.2.1.Структура данных.
- •3.2.2.Операции над данными.
- •3.2.3.Ограничения целостности.
- •4. Реляционный подход к представлению данных
- •4.1.Реляционная модель данных
- •4.1.1.Структура данных.
- •4.1.2.Свойства отношений.
- •4.2.Теория нормальных форм.
- •4.2.1.Функциональные зависимости.
- •4.2.5. Bcnf - нормальная форма Бойса-Кодда.
- •4.2.6. Многозначные зависимости и четвертая нормальная форма (4nf).
- •4.2.7. Зависимости по соединению и пятая нормальная форма (5nf).
- •4.3.Ограничения целостности
- •4.3.1.Целостность сущностей.
- •4.3.2.Целостность ссылок
- •4.4. Реляционная алгебра
- •4.4.1. Операции обработки кортежей.
- •4.4.2. Операции обработки отношений.
- •4.5. Реляционное исчисление.
- •4.6.Язык sql
- •4.7. Вопросы практического программирования.
- •4.8.Навигационный подход к манипулированию данными и персональные субд.
- •4.9.Транзакции, блокировки и многопользовательский доступ к данным.
- •4.10. Определение степени соответствия субд реляционной модели.
- •5. Проектирование реляционных баз данных.
- •5.1. Этапы проектирования данных
- •5.2.Инструментальные средства проектирования информационных систем.
- •5.4.Концептуальное моделирование.
- •5.5.Правила порождения реляционных отношений из модели "сущность-связь"
- •5.5.1. Бинарные связи
- •5.5.3. Иерархические связи.
- •5.6. Проектирование реляционной базы данных на основе декомпозиции универсального отношения.
- •5.7.Обзор некоторых case-систем.
- •5.7.1. Power Designer компании Sybase.
- •5.7.2. Silverrun компании Silverrun Technologies Ltd.
- •5.7.3. BpWin и erWin компании LogicWorks.
- •5.7.4. Designer/2000 компании Oracle.
- •6. Классификация субд.
- •6.1.Ограничения реляционных баз данных.
- •6.2.Постреляционные субд.
- •6.3.Объектно-ориентированные субд.
- •6.3.1. Объектно-ориентированная парадигма.
- •6.3.2. Объектно-ориентированные субд.
- •6.3.3. Стандарт odmg.
- •6.3.4. Объектные расширения реляционных субд. Язык sql-3.
- •6.4. Объектно-реляционные субд.
- •6.5.Нечисловая обработка и ассоциативные процессоры.
- •7. Представление данных по принципу технологии "клиент-сервер".
- •7.1.Архитектура "клиент-сервер".
- •7.1.1. Основные понятия.
- •7.1.2. Модели взаимодействия клиент-сервер.
- •7.1.3. Мониторы транзакций.
- •7.2.Обработка распределенных данных.
- •7.3.Структура сервера базы данных.
- •8.Базы знаний.
- •8.1. Понятие системы баз знаний.
- •8.2.Структура и функции системы баз знаний.
- •8.3.Инструментальные средства построения систем баз знаний.
Системы управления базами данных введение
Компьютеры были созданы для решения вычислительных задач, однако со временем они все чаще стали использоваться для построения систем обработки информации документов. Такие системы называют информационными. Данные системы имеют следующие особенности:
для обеспечения их работы нужны сравнительно низкие вычислительные мощности
данные, которые они используют, имеют сложную структуру
необходимы средства сохранения данных между последовательными запусками системы
Информационная система требует создания в памяти ЭВМ динамически обновляемой модели внешнего мира с использованием единого хранилища - базы данных.
Предметная область - часть реального мира, подлежащая изучению с целью организации управления и, в конечном счете, автоматизации. Предметная область представляется множеством фрагментов, например, предприятие - цехами, дирекцией, бухгалтерией. Каждый фрагмент предметной области характеризуется множеством объектов и процессов, использующих объекты, и множеством пользователей, характеризуемых различными взглядами на предметную область.
Отличительная черта баз данных: данные хранятся совместно с их описанием, а в прикладных программах описание данных не содержится. Независимые от программ пользователя данные обычно называются метаданными. В ряде современных систем метаданные, содержащие также информацию о пользователях, форматы отображения, статистику обращения к данным, хранятся в словаре базы данных.
Таким образом, система управления базой данных (СУБД) - важнейший компонент информационной системы.
Основные функции СУБД:
управление данными во внешней памяти (на дисках);
управление данными в оперативной памяти;
журнализация изменений и восстановление базы данных после сбоев;
поддержание языков БД (язык определения данных, язык манипулирования данными).
Обычно современная СУБД содержит следующие компоненты:
ядро, которое отвечает за управление данными во внешней и оперативной памяти и журнализацию,
процессор языка базы данных, обеспечивающий оптимизацию запросов на извлечение и изменение данных и создание машинно-независимого исполняемого внутреннего кода,
подсистему поддержки времени исполнения, которая интерпретирует программы манипуляции данными, создающие пользовательский интерфейс с СУБД
сервисные программы, обеспечивающие ряд дополнительных возможностей по обслуживанию информационной системы.
1. Компоненты субд
1.1. Типы и структуры данных
1.1.1. Основные типы данных.
Данные, хранящиеся в памяти ЭВМ, представляют собой совокупность нулей и единиц (битов). Биты объединяются в последовательности: байты, слова и т.д. Каждому участку оперативной памяти, который может вместить один байт или слово, присваивается порядковый номер (адрес). Любые данные могут быть отнесены к одному из двух типов: основному, форма представления которого определяется архитектурой ЭВМ, или сложному, конструируемому пользователем для решения конкретных задач. Данные простого типа это - символы, числа и элементы, дальнейшее дробление которых не имеет смысла. Из элементарных данных формируются структуры данных.
Некоторые структуры:
Массив - простая совокупность элементов данных одного типа, средство оперирования группой данных одного типа. Отдельный элемент массива задается индексом. Массив может быть одномерным, двумерным и т.д. Разновидностями одномерных массивов переменной длины являются структуры типа кольцо, стек, очередь и двухсторонняя очередь.
Запись - совокупность элементов данных разного типа. В простейшем случае запись содержит постоянное количество элементов, которые называют полями. Совокупность записей одинаковой структуры называется файлом. Для того, чтобы иметь возможность извлекать из файла отдельные записи, каждой записи присваивают уникальное имя или номер, которое служит ее идентификатором и располагается в отдельном поле. Этот идентификатор называют ключом.
Такие структуры данных как массив или запись занимают в памяти ЭВМ постоянный объем, поэтому их называют статическими структурами. К статическим структурам относится также множество.
Имеется ряд структур, которые могут изменять свою длину - так называемые динамические структуры. К ним относятся дерево, список, ссылка.
Важной структурой, для размещения элементов которой требуется нелинейное адресное пространство, является дерево. Существует большое количество структур данных, которые могут быть представлены как деревья: классификационные, иерархические, рекурсивные структуры.