
- •4.1 Основные законы электромеханического преобразования энергии
- •4.2 Основные законы, лежащие в основе теории электрических машин.
- •4.3 Расчет магнитной цепи машины постоянного тока.
- •4.4 Устройство и принцип работы машины постоянного тока.
- •4.5 Классификация машин постоянного тока по способу возбуждения
- •4.6 Рабочие характеристики дпт
- •4.7 Характеристики генератора постоянного тока
- •4.8 Способы пуска и регулирования частоты вращения ад.
- •Способы регулирования частоты вращ-я
- •С помощью реостата в цепи обмотки ротора Изменением величины питающего напряжения
- •4.9 Устройство и принцип работы трансфор-ра
- •4.10 Схема замещения 1фаз-го 2х обмот-го трансф-ра.
- •4.11 Условия включения трансф-ов на параллельную работу.
- •4.12 Условия создания кругового вращающего магнитного поля в машинах переменного тока.
- •4.13 Устройство и принцип работы асинхронной машины
- •4.14 Рабочие характеристики асинхронного двигателя
- •4.15 Способы пуска синхронных двигателей. Синхронный компенсатор.
- •4.16 Схема замещения одной фазы асинхр-й приведенной машины. О сновные положения:
- •4.17 Способы управления исполнительными двигателями постоянного тока.
4.14 Рабочие характеристики асинхронного двигателя
Рабочие характ-ки дв-я — это зависимость потребляемой мощности Р1, первичного тока I1, оэффиц-а мощн-и cosφ, момента на валу М, скольжения s и КПД от полезной мощности Р2 при постоянных номинальных напряжениях и частоте сети. Рабочие характ-ки позволяют находить все осн. величины, опред-е реж.работы дв. при различных нгрузах.
Задаваясь несколькими значениями мощности на валу Р2, находим для этих точек значения токов I1 потребляемой из сети мощности Р1 и момент на валу М. По соответствующим шкалам после дополнит-ых построений определяем cosφ, и s. КПД приближенно находим как отношение Р2/Р1.
При Р2=0 величина I1 и cosφ соответ-т реж.х.х.
4.15 Способы пуска синхронных двигателей. Синхронный компенсатор.
Рис.
37-1. Схемы цепи возбуждения синхронного
двигателя с машинными возбудителями
при пуске с разрядным сопротивлением
(а)
и
с наглухо приключенным возбудителем
(б)
I
— якорь
двигателя; 2
— обмотка
возбуждения двигателя; 3
— якорь
возбудителя; 4
— обмотка
возбуждения возбудителя; 5 — реостат
возбуждения возбудителя; 6
— разрядное
сопротивление; 7 и 8
— контакты
контактора или автомата гашения поля
Пуск по схеме рис. 37-1, а отличается определенной сложностью. Поэтому в последнее время все чаще применяется схема рис. 37-1, б с наглухо присоединенным возбудителем. При этом по цепи якоря 3 при пуске протекает переменный ток, который, однако, не причиняет вреда. При п = (0,60,7)пн возбудитель возбуждается и возбуждает синхронный двигатель, благодаря чему при приближении к синхронной скорости двигатель втягивается в синхронизм.
Пуск по схеме рис. 37-1, б происходит в менее благоприятных условиях. Во-первых, двигатель возбуждается слишком рано и при этом возникает дополнительный тормозящий момент на валу Мк. Во-вторых, в данном случае по сравнению со схемой рис. 37-1, а кривая асинхронного момента имеет менее благоприятный вид. Тем не менее, схема рис. 37-1, б обеспечивает надежное втягивание двигателя в синхронизм, если момент нагрузки на валу Мст при п п„ не превышает (0,40,5)Мн. Путем совершенствования пусковой обмотки двигателя можно достичь надежного втягивания в синхронизм при Мст = Мн. Пуск по схеме рис. 37-1, б по своей простоте приближается к пуску короткозамкнутого асинхронного двигателя и поэтому находит в последние годы все более широкое применение.
Обычно производится прямой асинхронный пуск синхронных двигателей путем включения на полное напряжение сети. При тяжелых условиях пуска (большие падения напряжения в сети и опасность перегрева пусковой обмотки или массивного ротора) производится реакторный или автотрансформаторный пуск при пониженном напряжении, как и у короткозамкнутых асинхронных двигателей. Кроме асинхронного пуска, можно привести во вращение синхронный двигатель на холостом ходу с помощью соединенной с ним машины (например, в агрегатах «синхронный двигатель-генератор постоянного тока»). В некоторых случаях возможен частотный пуск, когда двигатель питается от отдельного синхронного генератора и частота последнего плавно поднимается от нуля. При этом синхронный двигатель приходит в синхронное вращение уже при весьма малой, скорости. Обмотки возбуждения генератора и двигателя в этом случае необходимо питать от посторонних источников. Частотный пуск происходит наиболее благоприятно при условии, когда ток возбуждения генератора в начале пуска примерно равен номинальному, а ток возбуждения двигателя равен по характеристике холостого хода току возбуждения при U Uн и п = пн.
Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным является перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.
В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения. Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует его ток возбуждения так, что напряжение на зажимах компенсатора остается постоянным.
Синхронные компенсаторы лишены приводных двигателей и являются синхронными двигателями, работающими на холостом ходу. Компенсаторы строятся на мощность до SН = 100 MB·А и имеют явнополюсную конструкцию, обычно с 2р = 6 или 8. Мощные компенсаторы имеют водородное охлаждение. Для осуществления асинхронного пуска все синхронные компенсаторы снабжаются пусковыми обмотками в полюсных наконечниках или их полюсы делаются массивными. При этом используется способ прямого, а в необходимых случаях — способ реакторного пуска. Иногда мощные компенсаторы пускаются в ход также с помощью пусковых фазных асинхронных двигателей, укрепляемых с ними на одном валу.