
- •1.Статистические признаки и показатели. Классификация статистических признаков.
- •2. Структура данных: классификация различных типов наборов данных (одномерные, двумерные, многомерные, качественные и количественные данные, временные ряды)
- •3. Первичные и вторичные данные. Статистическое наблюдение как метод получения первичных данных (формы, виды и способы проведения).
- •4. Программно-методологические вопросы статистического наблюдения.
- •5. Ошибки статистического наблюдения.
- •6. Содержание статистической сводки.
- •7. Метод группировки. Виды группировок.
- •8. Статистические таблицы. Элементы и правила построения статистических таблиц.
- •9. Графическое изображение статистических данных.
- •10. Абсолютные статистические показатели. Относительные статистические показатели: виды, общие принципы построения и взаимосвязи.
- •11. Вариационные ряды, их виды, принципы построения и особенности применения. Графическое изображение вариационных рядов.
- •12. Квантили вариационного ряда. Мода. Медиана.
- •13. Средняя величина. Исходное соотношение средних. Условия типичности средних.
- •14. Средняя арифметическая и ее свойства.
- •15. Вариация и причины ее возникновения. Показатели вариации.
- •Среднее значение альтернативного признака и его дисперсия:
- •Среднее квадратическое отклонение альтернативного признака:
- •Показатели относительного рассеивания
- •16. Виды дисперсий: внутригрупповая (частная), межгрупповая и общая по правилу сложения дисперсий. Их смысл и значение. Правило сложения дисперсий, в том числе и для альтернативного признака.
- •17. Оценка взаимосвязей данных, измеренных на количественных шкалах. Коэффициент корреляции Пирсона. Таблица Чеддока.
- •18. Особенности анализа данных, измеренных на номинальной и порядковой шкалах. Номинальная шкала
- •Порядковая шкала
- •19. Коэффициенты ассоциации и контингенции, коэффициент взаимной сопряженности к.Пирсона.
- •20. Ранговые коэффициенты корреляции Спирмена и Кендалла. Особенности их вычисления при наличии связных рангов.
- •21. Понятие и классификация рядов динамики.
- •Пример ряда динамики
- •22. Методы преобразования рядов динамики.
- •Метод укрупнения интервалов времени.
- •Метод скользящей средней
- •Метод аналитического выравнивания
- •23. Аналитические показатели изменения уровней рядов динамики.
- •24. Компоненты ряда динамики. Методы анализа основной тенденции (тренда) в рядах динамики. Элементы прогнозирования в рядах динамики.
9. Графическое изображение статистических данных.
Современный анализ социально-экономических явлений немыслим без применения графического метода представления данных.
Графический метод есть метод условных изображений статистических данных при помощи геометрических фигур, линий, точек и разнообразных символических образов.
Главное достоинство статистических графиков - наглядность. При правильном их построении статистические показатели привлекают к себе внимание, становятся более понятными, выразительными, лаконичными, запоминающимися. Графики прочно вошли в практическую работу экономистов, статистиков и работников учета. В ряде случаев графики стали незаменимым средством обобщения статистических данных, подведения итогов сложных исследований и выявления связи между явлениями. Поэтому необходимо уметь строить и читать статистические графики.
Для построения графика необходимо определить, для каких целей он составляется, и тщательно изучить исходный материал. Но самое главное условие - это овладение методологией графических изображений. В статистическом графике различают следующие основные элементы: графический образ; поле графика; пространственные ориентиры, масштабные ориентиры; экспликации графика.
Рассмотрим подробнее каждый из указанных элементов.
Графический образ - это символические знаки, с помощью которых изображаются статистические данные: линии, точки, плоские геометрические фигуры (прямоугольники, квадраты, круги и т.д.
В качестве графического образа выступают и объемные фигуры. Иногда в графиках используются и негеометрические фигуры в виде силуэтов или рисунков предметов.
Одни и те же статистические данные можно изобразить с помощью различных графических образов. Поэтому при построении графика важен правильный подбор графического образа. Он должен доходчиво отображать изучаемые показатели и соответствовать основному предназначению графика.
Полем графика является место, на котором он выполняется. Это листы бумаги, географические карты, план местности и т.п. Поле графика характеризуется его форматом (размерами и пропорциями сторон). Размер поля графика зависит от его назначения. Стороны поля статистического графика обычно находятся в определенной пропорции. Принято считать, что наиболее оптимальным для зрительного восприятия является график, выполненный на поле прямоугольной формы с соотношением сторон 1:1,3 до 1:1,5; этот вариант именуется правилом «золотого сечения». Иногда используется и поле графика с равными сторонами, т.е. в виде квадрата.
Построение графика - это всегда творческий процесс. Здесь необходим некоторый поиск. Лишь после составления и сравнения нескольких черновых вариантов можно определить правильную композицию графика, установить масштабы и расположение знаков на поле графика.
Пространственные ориентиры графика задаются в виде системы координатных сеток. Система координат необходима для размещения геометрических знаков в поле графика. Наиболее распространенной является система прямоугольных координат. Для построения статистических графиков используется обычно только 1-й и изредка 1-й и 4-й квадраты. В практике графического изображения применяются также полярные координаты. Они необходимы для наглядного изображения циклического движения явления во времени. В полярной системе координат один из лучей, обычно правый горизонтальный, принимается за ось ординат, относительно которой определяется угол луча (первая координата). Второй координатой считается ее расстояние от центра сетки, называемое радиусом.
В радиальных графиках лучи обозначают моменты времени, а окружность - величину изучаемого явления. На статистических картах пространственные ориентиры задаются контурной сеткой (контуры рек, береговая линия морей и океанов, границы государств) и определяют те территории, к которым относятся статистические величины.
Масштабные ориентиры статистического графика определяются масштабом и системой масштабных шкал. Масштаб статистического графика - это мера перевода числовой величины в графическую.
Масштабной шкалой называется линия, отдельные точки которой могут быть прочитаны как определенные числа. Шкала имеет большое значение в графике и включает три элемента: линию (или носитель шкалы); определенное число помеченных черточками точек, которые расположены на носителе шкалы в определенном порядке, цифровое обозначение чисел, соответствующих отдельным помеченным точкам. Как правило, цифровым обозначением снабжаются не все помеченные точки, а лишь некоторые из них, расположенные в определенном порядке. По правилам числовое значение необходимо помещать строго против соответствующих точек, а не между ними .Носитель шкалы может представлять собой как прямую, так и кривую линии. Поэтому различают шкалы прямолинейные (например, миллиметровая линейка) и криволинейные - дуговые и круговые (циферблат часов).
Графические и числовые интервалы бывают равными и неравными. Если на всем протяжении шкалы равным графическим интервалам соответствуют равные числовые, такая шкала называется равномерной. Когда же равным числовым интервалам соответствуют неравные графические интервалы, и наоборот, шкала называется неравномерной.
Масштабом равномерной шкалы называется длина отрезка (графический интервал), принятого за единицу и измеренного в каких-либо мерах. Чем меньше масштаб , тем гуще располагаются на шкале точки, имеющие одно и то же значение. Построить шкалу — это значит на заданном носителе шкалы разместить точки и обозначить их соответствующими числами согласно условиям задачи. Как правило, масштаб определяется примерной прикидкой возможной длины шкалы и ее пределов. Например, на поле в 20 клеток надо построить шкалу от 0 до 850. Так как 850 не делится удобно на 20, то округляем число 850 до ближайшего удобного числа, в данном случае 1000 (1000 : 20 = 50), т.е. в одной клетке 50, а в двух клетках 100; следовательно, масштаб - 100 в двух клетках.
Из неравномерных шкал наибольшее распространение имеет логарифмическая. Методика ее построения несколько иная, так как на этой шкале отрезки пропорциональны не изображаемым величинам, а их логарифмам. Так, при основании 10 lg1 = 0; lg10 = 1; lg100 = 2 и т.д. Последний элемент графика - экспликация. Каждый график должен иметь словесное описание его содержания. Описание включает название графика, которое в краткой форме передает его содержание надписи вдоль масштабных шкал и пояснения к отдельным частям графика.