
- •1.Статистические признаки и показатели. Классификация статистических признаков.
- •2. Структура данных: классификация различных типов наборов данных (одномерные, двумерные, многомерные, качественные и количественные данные, временные ряды)
- •3. Первичные и вторичные данные. Статистическое наблюдение как метод получения первичных данных (формы, виды и способы проведения).
- •4. Программно-методологические вопросы статистического наблюдения.
- •5. Ошибки статистического наблюдения.
- •6. Содержание статистической сводки.
- •7. Метод группировки. Виды группировок.
- •8. Статистические таблицы. Элементы и правила построения статистических таблиц.
- •9. Графическое изображение статистических данных.
- •10. Абсолютные статистические показатели. Относительные статистические показатели: виды, общие принципы построения и взаимосвязи.
- •11. Вариационные ряды, их виды, принципы построения и особенности применения. Графическое изображение вариационных рядов.
- •12. Квантили вариационного ряда. Мода. Медиана.
- •13. Средняя величина. Исходное соотношение средних. Условия типичности средних.
- •14. Средняя арифметическая и ее свойства.
- •15. Вариация и причины ее возникновения. Показатели вариации.
- •Среднее значение альтернативного признака и его дисперсия:
- •Среднее квадратическое отклонение альтернативного признака:
- •Показатели относительного рассеивания
- •16. Виды дисперсий: внутригрупповая (частная), межгрупповая и общая по правилу сложения дисперсий. Их смысл и значение. Правило сложения дисперсий, в том числе и для альтернативного признака.
- •17. Оценка взаимосвязей данных, измеренных на количественных шкалах. Коэффициент корреляции Пирсона. Таблица Чеддока.
- •18. Особенности анализа данных, измеренных на номинальной и порядковой шкалах. Номинальная шкала
- •Порядковая шкала
- •19. Коэффициенты ассоциации и контингенции, коэффициент взаимной сопряженности к.Пирсона.
- •20. Ранговые коэффициенты корреляции Спирмена и Кендалла. Особенности их вычисления при наличии связных рангов.
- •21. Понятие и классификация рядов динамики.
- •Пример ряда динамики
- •22. Методы преобразования рядов динамики.
- •Метод укрупнения интервалов времени.
- •Метод скользящей средней
- •Метод аналитического выравнивания
- •23. Аналитические показатели изменения уровней рядов динамики.
- •24. Компоненты ряда динамики. Методы анализа основной тенденции (тренда) в рядах динамики. Элементы прогнозирования в рядах динамики.
12. Квантили вариационного ряда. Мода. Медиана.
Квантили вариационного ряда – это варианты, занимающие определенное место в вариационном ряду. К числу квантилей, наиболее часто используемых в статистическом анализе, относят перцентили, квартили, децили и медиану, которые характеризуют структуру вариационного ряда.
Квантиль - это значение хq случайной величины, удовлетворяющей условию: F(xq) = q, где F(xq) - вероятность того, что Х<x.
Различают:
медиану при q=0,5,
квартели при q=0,25
квинтели при q=0,2
децили при q=0,1
процентили при q=0,01
Мода- варианта, которая наиболее часто встречается в ряду распределения (в данной совокупности).
В дискретных вариационных рядах мода определяется по наибольшей частоте. Предположим товар А реализуют в городе 9 фирм по следующим ценам в рублях:
44; 43; 44; 45; 43; 46; 42; 46;43. Так как чаще всего встречается цена 43 рубля, то она и будет модальной.
При характеристике социальных групп населения по уровню дохода следует использовать модальное значение, нежели среднее. Средняя будет занижать одни показатели и завышать другие — тем самым осредняя (уравнивания) доходы всех слоев населения.
В интервальных вариационных рядах моду определяют приближенно по формуле:
ХМ0 — нижняя граница модального интервала;
hMo - величина (шаг, ширина) модального интервала;
f1 - локальная частота интервала, предшествующего модальному;
f2 - локальная частота модального интервала;
f3 - локальная частота интервала, следующего за модальным.
Медианной в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам, по обе стороны от нее (вверх и вниз) находится одинаковое количество единиц совокупности.
Мода и медиана в отличии от степенных средних являются конкретными характеристиками, их значение имеет какая-либо конкретная варианта в вариационном ряду.
Мода применяется в тех случаях, когда нужно охарактеризовать наиболее часто встречающуюся величину признака. Если надо, например, узнать наиболее распространенный размер заработной платы на предприятии, цену на рынке, по которой было продано наибольшее количество товаров, размер ботинок, пользующийся наибольшим спросом у потребителей, и т.д., в этих случаях прибегают к моде.
Медиана интересна тем, что показывает количественную границу значение варьирующего признака, которую достигла половина членов совокупности. Пусть средняя заработная плата работников банка составила 650000 руб. в месяц. Эта характеристика может быть дополнена, если мы скажем, что половина работников получила заработную плату 700000 руб. и выше, т.е. приведем медиану. Мода и медиана являются типичными характеристиками в тех случаях, когда взяты совокупности однородные и большой численности.
13. Средняя величина. Исходное соотношение средних. Условия типичности средних.
Наиболее распространенной формой статистических показателей, используемой в социально - экономических явлениях, является средняя величина, представляющая собой обобщенную количественную характеристику признака в статистической совокупности в конкретных условиях места и времени. Сущность средней состоит в том, что в ней взаимопогашаются отклонения значений признака у отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных.
Определить среднюю во многих случаях можно через исходное соотношение средней (ИСС) и ее логическую формулу. Суммарное значение или объем осредняемого признака ИСС= Число единиц или объем совокупности В каждом конкретном случае для реализации исходного соотношения средней может потребоваться одна из следующих форм средней величины:
- средняя арифметическая ; - средняя гармоническая; - средняя геометрическая; - средняя квадратическая, кубическая и т. д. Наиболее распространенным видом средних величин является средняя арифметическая, которая как и все средние, в зависимости от характера имеющихся данных может быть простой или взвешенной.
Определить среднюю можно через исходное соотношение средней (ИСС) ее
логическую формулу.
От того в каком виде представлены данные для расчета средней, зависит каким
именно будет ИСС.
Типичность средней непосредственным образом связана с однородностью статистической совокупности. Средняя величина только тогда будет отражать типичный уровень признака, когда она рассчитана по качественно однородной совокупности. Так, например, если мы рассчитаем средний уровень доходов служащих, то получим фиктивную среднюю. Это объясняется тем, что используемая для расчета средней совокупность, включающая служащих государственных, совместных, арендных, акционерных предприятий, а также органов государственного управления, сферы науки, культуры, образования и т. п., является крайне неоднородной. В этом и подобных случаях метод средних используется в сочетании с методом группировок: если совокупность неоднородна – общие средние должны быть заменены или дополнены групповыми средними, т. е. средними, рассчитанными по качественно однородным группам.