
- •Часть 1.
- •Глава I
- •§ 1. Геолого-геофизические условия проведения каротажа
- •§ 1. Геолого-геофизические условия проведения каротажа
- •Изменение диаметра скважины
- •Проникновение фильтрата пж в пласт
- •2. Каротаж потенциалов самопроизвольной поляризации
- •§ 2. Каротаж потенциалов самопроизвольной поляризации
- •Диффузионно-адсорбционные потенциалы. Диффузия
- •Диффузия и адсорбция
- •Фильтрационные потенциалы
- •Суммарные потенциалы Епс в скважине
- •Влияние мощности пласта и диаметра скважины
- •Влияние удельного сопротивления пласта, промывочной жидкости и вмещающих пород.
- •Влияние глинистости
- •Основные факторы, влияющие на форму и амплитуду отклонения кривой пс
- •Кривая пс против пород различной литологии
- •Определение удельного сопротивления и минерализации пластовых вод по кривой пс
- •Применение кривых пс
- •§ 3. Удельное сопротивление водных растворов и горных пород
- •Удельное сопротивление водных растворов солей
- •Удельное сопротивление чистых неглинистых пород гранулярного строения
- •Удельное сопротивление песчано-глинистых пород
- •Удельное сопротивление трещиноватых и кавернозных пород
- •Удельное сопротивление нефтегазоносных пород
- •Влияние всестороннего давления на величину удельного сопротивления пород
- •Глава iiосновные способы измерения кажущегося удельного сопротивления горных пород и определение их истинного удельного сопротивления (каротаж сопротивления)
- •§ 4. Каротаж обычными зондами
- •Кривые сопротивления против пластов конечной мощности. Форма кривых.
- •Боковое каротажное зондирование
- •Кажущееся удельное сопротивление пласта неограниченной мощности (палетки бкз)
- •Обработка материалов бкз
- •Применение электрического каротажа обычными зондами и выбор стандартного зонда
- •§ 5. Боковой каротаж
- •Многоэлектродные боковые каротажные зонды
- •Кривые кажущегося сопротивления бк против пластов конечной мощности. Форма кривых.
- •Влияние зоны проникновения
- •Обработка и интерпретация кривых бк
- •Трехэлектродный бк
- •Комплексные зонды бк
- •Применение бокового каротажа
- •§ 6. Измерение кажущегося удельного сопротивления микроустановками
- •Микрокаротаж
- •Боковой микрокаротаж
- •Интерпретация кривых, полученных микрокаротажем
- •Интерпретация диаграмм бмк
- •Измерение удельного сопротивления пж
- •§ 7. Индукционный каротаж
- •Физические основы индукционного каротажа
- •Кажущаяся электрическая проводимость и форма кривой
- •Форма кривой и определение границ при ик
- •Обработка и интерпретация данных индукционного каротажа
- •Применение индукционного каротажа
- •§ 8. Универсальные способы интерпретации кривых сопротивления
- •§ 8. Универсальные способы интерпретации кривых сопротивления
- •Изорезистивная методика интерпретации кривых сопротивлений
- •Глава III. Диэлектрический каротаж
- •§ 9. Диэлектрическая проницаемость горных пород и принцип ее измерения
- •§ 10. Волновой диэлектрический каротаж
- •Влияние скважины
- •Интерпретация данных вдк
- •Применение диэлектрического каротажа
- •Глава IV. Радиоактивный каротаж
- •§ 11. Гамма-каротаж. Физические основы.
- •Интерпретация данных гамма-каротажа
- •§ 12. Спектральный гамма-каротаж
- •§ 13. Гамма-гамма-каротаж. Физические основы.
- •Плотностной гамма-гамма каротаж
- •Селективный гамма-гамма каротаж
- •§ 14. Нейтронный каротаж
- •Нейтронный гамма-каротаж
- •Нейтрон-нейтронный каротаж по тепловым и надтепловым нейтронам
- •Многозондовый нейтрон-нетронный каротаж
- •§ 15. Импульсный нейтронный каротаж
- •Импульсный нейтрон-нейтронный каротаж
- •Импульсный нейтронный гамма-каротаж
- •Влияние скважины на показания инк
- •Глубинность исследований методом инк
- •Применение инк
- •§ 16. Форма кривой при радиоактивном каротаже
- •Глава V. Акустический каротаж
- •§ 17. Физические основы
- •Распространение упругих волн в скважине
- •Каротажные зонды
- •§ 18. Акустический каротаж по скорости
- •§ 19. Акустический каротаж по затуханию
- •Форма кривой при акустическом каротаже и определение границ пластов
- •Выбор оптимальной длины зонда ак
- •Глава VI ядерно-магнитный каротаж
- •§ 20. Физические основы
- •§ 21. Интерпретация диаграмм ямк
- •Выделение коллекторов
- •Определение характера насыщения пород
- •Глава VII. Термометрия скважин
- •§ 22. Метод естественного теплового поля земли (геотермия)
- •§ 23. Методы изучения местных тепловых полей
- •Глава VIII другие виды каротажа
- •§ 24. Кавернометрия и профилеметрия
- •§ 25. Выявление зон аномально высокого давления и оценка давления
- •§ 25. Выявление зон аномально высокого давления и оценка давления
- •§ 26. Определение падения пластов (наклонометрия)
- •§ 27. Опробование пластов в процессе бурения приборами на каротажном кабеле и испытателями пластов на трубах
- •Опробование пластов приборами на каротажном кабеле
- •Оценка характера насыщенности пластов по данным опк
- •Опробование скважин испытателями пластов на трубах
- •Глава IX. Геохимические и геолого-технологические методы исследования скважин
- •§ 28. Газовый каротаж в процессе бурения
- •Основные технологические параметры, измеряемые при газовом каротаже
- •Параметры, характеризующие газо- и нефтесодержание пластов
- •Компонентный газовый анализ
- •Определение глубин
- •§ 29. Газовый каротаж после бурения
- •§ 30. Интерпретация данных газового каротажа
- •§ 30. Интерпретация данных газового каротажа
- •Прогнозная оценка характера насыщения пластов по данным газового каротажа и гис
- •§ 31. Геолого-технологическая информация в процессе бурения
- •Выделение продуктивных пластов
- •Прогнозирование зон аномально высоких пластовых давлений
- •Получение технологической информации
- •Применение геохимических и геолого-технологических методов исследования скважин
- •Глава X
- •§ 32. Изучение литологии и последовательности залегания пластов
- •Локальные кореляционные схемы
- •Региональная кореляция
- •Составление типового, нормального и сводного геолого-геофизического разрезов
- •§ 33. Геологические построения
- •§ 34. Коллекторы нефти и газа и принципы их выделения по данным гис
- •§ 35. Выделение терригенных коллекторов
- •36. Выделение карбонатных коллекторов
- •§ 36. Выделение карбонатных коллекторов
- •Высокопористые (поровые) коллекторы
- •Малопористые (трещиновато-каверновые) коллекторы
- •Смешанные (трещинно-каверново-поровые) коллекторы
- •Повторные измерения в скважине. Временные изменения.
- •Методика двух жидкостей
- •Каротаж-испытание-каротаж (кик)
- •§ 37. Определение глинистости коллекторов
- •§ 37. Определение глинистости коллекторов
- •Гамма-каротаж
- •Каротаж пс
- •§ 38. Определение пористости по данным электрического каротажа
- •§ 38. Определение пористости по данным электрического каротажа
- •§ 39. Определение пористости по данным радиоактивного каротажа
- •§ 39. Определение пористости по данным радиоактивного каротажа
- •Нейтронный каротаж
- •Однозондовый нк
- •Двухзондовый 2ннкт
- •Интерпретация кривых нгк и ннк способами опорного пласта
- •§ 40. Определение пористости пород по данным акустического каротажа
- •§ 40. Определение пористости пород по данным акустического каротажа
- •41. Комплексная интерпретация результатов каротажа
- •§ 41. Комплексная интерпретация результатов каротажа
- •41. Комплексная интерпретация результатов каротажа
- •§ 41. Комплексная интерпретация результатов каротажа
- •Определение пористости и глинистости терригенных пород
- •Определение фракционного состава песчано-алевритовых пород по данным рк
- •Способы оценки пористости пород с учетом их литологии
- •Определение пористости и литологии путем решения системы уравнений
- •Оценка литологии пород по комплексу геофизических данных
- •Графический способ оценки пористости глинистых коллекторов
- •§ 42. Оценка пористости карбонатных пород по комплексу методов сопротивления и нейтронного гамма-каротажа
- •§ 42. Оценка пористости карбонатных пород по комплексу методов сопротивления и нейтронного гамма-каротажа
- •Способ нормализации
- •Глава XIII
- •§ 43. Определение коэффициента нефтегазонасыщенности
- •§ 43. Определение коэффициента нефтегазонасыщенности
- •Глинистый коллектор с межзерновой пористостью
- •Универсальная методика оценки нефтегазонасыщенности песчано-глинистых коллекторов
- •Оценка пористости и нефтегазонасыщености песчано-глинистых коллекторов по данным удельного сопротивления и пс
- •Песчано-глинистые породы с рассеянным глинистым материалом
- •Оценка промышленной нефтегазоносности пласта
- •Погрешности определения пористости и нефтегазонасыщенности пород по удельному сопротивлению
- •§ 44. Разделение нефтеносных и газоносных пластов
- •§ 45. Выделение переходной зоны
- •§ 45. Выделение переходной зоны
- •46. Оценка проницаемости пород
- •§ 46. Оценка проницаемости пород
- •Оценка проницаемости по удельному сопротивлению
- •Оценка проницаемости по градиенту удельного сопротивления
- •Гидродинамический каротаж
- •Глава XIV Методы контроля разработки нефтяных и газовых месторождений
- •Глава XIV
- •§ 47. Использование данных термометрии при контроле разработки залежи
- •§ 47. Использование данных термометрии при контроле разработки залежи
- •§ 48. Определение положения водонефтяного и газожидкостного контактов и контроль обводнения скважин
- •§ 48. Определение положения водонефтяного и газожидкостного контактов и контроль обводнения скважин
- •§ 49. Расходометрия скважин
- •§ 49. Расходометрия скважин
- •§ 50. Исследование состава флюидов в стволе скважины
- •§ 50. Исследование состава флюидов в стволе скважины
- •Глава XV Автоматизированная обработка и интерпретация результатов геофизических исследований скважин
- •Глава XV
- •§ 51. Схемы автоматизированной обработки и интерпретации данных гис
- •§ 51. Схемы автоматизированной обработки и интерпретации данных гис
- •§ 52. Сбор данных гис в цифровой форме
- •§ 52. Сбор данных гис в цифровой форме
- •Регистрация данных гис
- •Первичная обработка данных гис
- •§ 53. Обработка и интерпретация данных гис
- •§ 54. Обоснование комплекса геофизических исследований скважин
- •§ 54. Обоснование комплекса геофизических исследований скважин
- •§ 55. Основные требования к качеству измерений при гис
- •§ 55. Основные требования к качеству измерений при гис
- •Список литературы
§ 31. Геолого-технологическая информация в процессе бурения
Для оптимизации бурения скважин, повышения его эффективности и изучения геологического разреза в процессе бурения используются различные геолого-технологические информационно-измерительные системы. Последние представляют собой сложный комплекс контрольо-измерительных приборов и ЭВМ, предназначенный для решения следующих задач: сбор и анализ геологической информации для определения литологии, выделение коллекторов, оценка коллекторских свойств и характера насыщения пород, прогнозирование порового и пластового давлений, оптимизация бурения скважины — выбор долот, типа промывочной жидкости и ее плотности, нагрузки на долото, скорости ее вращения и др., управление оборудованием и аварийной сигнализацией.
Все разрабатываемые и внедряемые скважинные системы преследуют цели — оптимизацию бурения скважин и получение наиболее полной геологической информации о вскрываемом разрезе. Решение этих задач производится часто с использованием автоматической газокаротажной станции, дооборудованной приборами измерения технологических параметров процесса бурения.
Рассмотрим основные критерии, используемые при решении геологических задач. Литологическое расчленение разреза базируется главным образом на результатах анализа шлама и данных измерений продолжительности (скорости) бурения. Дополнительным источником информации о литологии разбуриваемых пород является вибрация бурового инструмента при работе долота на забое. Выделение коллекторов в разрезе и количественное определение их свойств осуществляется по шламу, керну, параметрам циркуляционной системы, продолжительности бурения и др. Определение пористости и проницаемости выполняется в основном по шламу с участием операторов. Отбор керна производится, как правило, ограниченно и только в продуктивных горизонтах.
Информацию о размещении в разрезе коллекторов, поглощающих или отдающих жидкость, и о их фильтрационных свойствах получают по измерениям уровня жидкости в приемных емкостях, по расходу ПЖ на входе и выходе и изменению показателей ее физических свойств (газосодержания, плотности, вязкости, диэлектрической проницаемости, температуры, удельного электрического сопротивления, минералогического состава, содержания твердой фазы и др.). Возможность определения перечисленных факторов основана на том, что малейшее проникновение фильтрата в пласты вызывает уменьшение общего объема ПЖ в емкостях и ее расхода на выходе скважины. При поступлении флюида из пласта в скважину объем ПЖ и ее расход возрастают, что приводит к снижению плотности и изменению других ее физических свойств. Весьма ценную информацию для выделения коллекторов можно получить по данным о продолжительности бурения. Высокопористые проницаемые коллекторы разбуриваются быстрее, чем глины.
Выделение продуктивных пластов
На основании непрерывного анализа шлама и ПЖ на углеводородосодержание производится выделение продуктивных пластов в скважине. Суммарный объем газа, извлекаемого из ПЖ, и его компонентный состав непрерывно регистрируются на диаграммах. В некоторых информационных системах предусмотрены сплошной отбор керна в продуктивной зоне и его детальное изучение. Нефть и твердые битумы обладают свойством люминесцировать под воздействием ультрафиолетовых лучей, поэтому с помощью автоматического пробоотборника промывочную жидкость и шлам направляют в детектор нефти, снабженный источником ультрафиолетового света. По форме люминесцирующего пятна приблизительно оценивают степень битумосодержания. При большом содержании битумов наблюдается люминесцирующее пятно, при среднем — кольцо, при малом битумосодержании — отдельные точки. По цвету свечения в общих чертах можно судить о качественном составе битумов. Светло-голубое или голубое пятно соответствует маслянистому битуму, желтое с бурым оттенком — смолистому, бурое, бурое с коричневым оттенком — асфальтовому.
Информация, которую несут промывочная жидкость и шлам, поступает с задержкой (отставанием) во времени. В результате действующая глубина Нд к моменту поступления промывочной жидкости к устью скважины и выносу шлама не соответствует истинным глубинам залегания пластов, из которых получены данные — образец шлама или порция ПЖ.
Привязка шлама к истинным глубинам производится с учетом времени не только перемещения ПЖ в затрубном пространстве скважины, но и осаждения частицы шлама в самой ПЖ. Скорость осаждения (седиментации) частиц пород вычисляется по формуле Риттингера
где Кф — коэффициент пропорциональности, зависящий от формы частиц шлама; d — диаметр шара, масса которого равна массе частицы неправильной формы, в см; δп и δс — плотности соответственно породы и промывочной жидкости в г/см3.
Согласно (IX. 17), скорость осаждения шлама зависит от размеров частиц: более мелкие частицы опережают более крупные. Поэтому единовременно отобранная порция шлама содержит частицы различных размеров, относящихся к пластам, залегающим на разных глубинах. В связи с этим для сбора шлама используют автоматический шламоотборник, дающий возможность отбирать шлам раздельно по фракциям соответственно до 3, от 3 до 5 мм и более. Каждая порция фракции автоматически маркируется в соответствии с сигналами исправленных глубин Нисп. ш и Нисп. п для шлама и породы. Для этого через заданные интервалы истинных глубин экспериментально или расчетным путем находят объем затрубного пространства скважины для n-фракции Vcn. Значение Vcn определяют чаще всего экспериментально, измеряя объем ПЖ, поступившей из скважины за среднее время перемещения частиц данной габаритной фракции шлама.
Преобразование сигналов действующих глубин Нд. ш и Нд. п для каждой порции шлама Ниш и породы Ни.п в истинные проводится с помощью многоканального запоминающего устройства АГКС с учетом времени перемещения из скважины объемов ПЖ Vcn.