
- •Часть 1.
- •Глава I
- •§ 1. Геолого-геофизические условия проведения каротажа
- •§ 1. Геолого-геофизические условия проведения каротажа
- •Изменение диаметра скважины
- •Проникновение фильтрата пж в пласт
- •2. Каротаж потенциалов самопроизвольной поляризации
- •§ 2. Каротаж потенциалов самопроизвольной поляризации
- •Диффузионно-адсорбционные потенциалы. Диффузия
- •Диффузия и адсорбция
- •Фильтрационные потенциалы
- •Суммарные потенциалы Епс в скважине
- •Влияние мощности пласта и диаметра скважины
- •Влияние удельного сопротивления пласта, промывочной жидкости и вмещающих пород.
- •Влияние глинистости
- •Основные факторы, влияющие на форму и амплитуду отклонения кривой пс
- •Кривая пс против пород различной литологии
- •Определение удельного сопротивления и минерализации пластовых вод по кривой пс
- •Применение кривых пс
- •§ 3. Удельное сопротивление водных растворов и горных пород
- •Удельное сопротивление водных растворов солей
- •Удельное сопротивление чистых неглинистых пород гранулярного строения
- •Удельное сопротивление песчано-глинистых пород
- •Удельное сопротивление трещиноватых и кавернозных пород
- •Удельное сопротивление нефтегазоносных пород
- •Влияние всестороннего давления на величину удельного сопротивления пород
- •Глава iiосновные способы измерения кажущегося удельного сопротивления горных пород и определение их истинного удельного сопротивления (каротаж сопротивления)
- •§ 4. Каротаж обычными зондами
- •Кривые сопротивления против пластов конечной мощности. Форма кривых.
- •Боковое каротажное зондирование
- •Кажущееся удельное сопротивление пласта неограниченной мощности (палетки бкз)
- •Обработка материалов бкз
- •Применение электрического каротажа обычными зондами и выбор стандартного зонда
- •§ 5. Боковой каротаж
- •Многоэлектродные боковые каротажные зонды
- •Кривые кажущегося сопротивления бк против пластов конечной мощности. Форма кривых.
- •Влияние зоны проникновения
- •Обработка и интерпретация кривых бк
- •Трехэлектродный бк
- •Комплексные зонды бк
- •Применение бокового каротажа
- •§ 6. Измерение кажущегося удельного сопротивления микроустановками
- •Микрокаротаж
- •Боковой микрокаротаж
- •Интерпретация кривых, полученных микрокаротажем
- •Интерпретация диаграмм бмк
- •Измерение удельного сопротивления пж
- •§ 7. Индукционный каротаж
- •Физические основы индукционного каротажа
- •Кажущаяся электрическая проводимость и форма кривой
- •Форма кривой и определение границ при ик
- •Обработка и интерпретация данных индукционного каротажа
- •Применение индукционного каротажа
- •§ 8. Универсальные способы интерпретации кривых сопротивления
- •§ 8. Универсальные способы интерпретации кривых сопротивления
- •Изорезистивная методика интерпретации кривых сопротивлений
- •Глава III. Диэлектрический каротаж
- •§ 9. Диэлектрическая проницаемость горных пород и принцип ее измерения
- •§ 10. Волновой диэлектрический каротаж
- •Влияние скважины
- •Интерпретация данных вдк
- •Применение диэлектрического каротажа
- •Глава IV. Радиоактивный каротаж
- •§ 11. Гамма-каротаж. Физические основы.
- •Интерпретация данных гамма-каротажа
- •§ 12. Спектральный гамма-каротаж
- •§ 13. Гамма-гамма-каротаж. Физические основы.
- •Плотностной гамма-гамма каротаж
- •Селективный гамма-гамма каротаж
- •§ 14. Нейтронный каротаж
- •Нейтронный гамма-каротаж
- •Нейтрон-нейтронный каротаж по тепловым и надтепловым нейтронам
- •Многозондовый нейтрон-нетронный каротаж
- •§ 15. Импульсный нейтронный каротаж
- •Импульсный нейтрон-нейтронный каротаж
- •Импульсный нейтронный гамма-каротаж
- •Влияние скважины на показания инк
- •Глубинность исследований методом инк
- •Применение инк
- •§ 16. Форма кривой при радиоактивном каротаже
- •Глава V. Акустический каротаж
- •§ 17. Физические основы
- •Распространение упругих волн в скважине
- •Каротажные зонды
- •§ 18. Акустический каротаж по скорости
- •§ 19. Акустический каротаж по затуханию
- •Форма кривой при акустическом каротаже и определение границ пластов
- •Выбор оптимальной длины зонда ак
- •Глава VI ядерно-магнитный каротаж
- •§ 20. Физические основы
- •§ 21. Интерпретация диаграмм ямк
- •Выделение коллекторов
- •Определение характера насыщения пород
- •Глава VII. Термометрия скважин
- •§ 22. Метод естественного теплового поля земли (геотермия)
- •§ 23. Методы изучения местных тепловых полей
- •Глава VIII другие виды каротажа
- •§ 24. Кавернометрия и профилеметрия
- •§ 25. Выявление зон аномально высокого давления и оценка давления
- •§ 25. Выявление зон аномально высокого давления и оценка давления
- •§ 26. Определение падения пластов (наклонометрия)
- •§ 27. Опробование пластов в процессе бурения приборами на каротажном кабеле и испытателями пластов на трубах
- •Опробование пластов приборами на каротажном кабеле
- •Оценка характера насыщенности пластов по данным опк
- •Опробование скважин испытателями пластов на трубах
- •Глава IX. Геохимические и геолого-технологические методы исследования скважин
- •§ 28. Газовый каротаж в процессе бурения
- •Основные технологические параметры, измеряемые при газовом каротаже
- •Параметры, характеризующие газо- и нефтесодержание пластов
- •Компонентный газовый анализ
- •Определение глубин
- •§ 29. Газовый каротаж после бурения
- •§ 30. Интерпретация данных газового каротажа
- •§ 30. Интерпретация данных газового каротажа
- •Прогнозная оценка характера насыщения пластов по данным газового каротажа и гис
- •§ 31. Геолого-технологическая информация в процессе бурения
- •Выделение продуктивных пластов
- •Прогнозирование зон аномально высоких пластовых давлений
- •Получение технологической информации
- •Применение геохимических и геолого-технологических методов исследования скважин
- •Глава X
- •§ 32. Изучение литологии и последовательности залегания пластов
- •Локальные кореляционные схемы
- •Региональная кореляция
- •Составление типового, нормального и сводного геолого-геофизического разрезов
- •§ 33. Геологические построения
- •§ 34. Коллекторы нефти и газа и принципы их выделения по данным гис
- •§ 35. Выделение терригенных коллекторов
- •36. Выделение карбонатных коллекторов
- •§ 36. Выделение карбонатных коллекторов
- •Высокопористые (поровые) коллекторы
- •Малопористые (трещиновато-каверновые) коллекторы
- •Смешанные (трещинно-каверново-поровые) коллекторы
- •Повторные измерения в скважине. Временные изменения.
- •Методика двух жидкостей
- •Каротаж-испытание-каротаж (кик)
- •§ 37. Определение глинистости коллекторов
- •§ 37. Определение глинистости коллекторов
- •Гамма-каротаж
- •Каротаж пс
- •§ 38. Определение пористости по данным электрического каротажа
- •§ 38. Определение пористости по данным электрического каротажа
- •§ 39. Определение пористости по данным радиоактивного каротажа
- •§ 39. Определение пористости по данным радиоактивного каротажа
- •Нейтронный каротаж
- •Однозондовый нк
- •Двухзондовый 2ннкт
- •Интерпретация кривых нгк и ннк способами опорного пласта
- •§ 40. Определение пористости пород по данным акустического каротажа
- •§ 40. Определение пористости пород по данным акустического каротажа
- •41. Комплексная интерпретация результатов каротажа
- •§ 41. Комплексная интерпретация результатов каротажа
- •41. Комплексная интерпретация результатов каротажа
- •§ 41. Комплексная интерпретация результатов каротажа
- •Определение пористости и глинистости терригенных пород
- •Определение фракционного состава песчано-алевритовых пород по данным рк
- •Способы оценки пористости пород с учетом их литологии
- •Определение пористости и литологии путем решения системы уравнений
- •Оценка литологии пород по комплексу геофизических данных
- •Графический способ оценки пористости глинистых коллекторов
- •§ 42. Оценка пористости карбонатных пород по комплексу методов сопротивления и нейтронного гамма-каротажа
- •§ 42. Оценка пористости карбонатных пород по комплексу методов сопротивления и нейтронного гамма-каротажа
- •Способ нормализации
- •Глава XIII
- •§ 43. Определение коэффициента нефтегазонасыщенности
- •§ 43. Определение коэффициента нефтегазонасыщенности
- •Глинистый коллектор с межзерновой пористостью
- •Универсальная методика оценки нефтегазонасыщенности песчано-глинистых коллекторов
- •Оценка пористости и нефтегазонасыщености песчано-глинистых коллекторов по данным удельного сопротивления и пс
- •Песчано-глинистые породы с рассеянным глинистым материалом
- •Оценка промышленной нефтегазоносности пласта
- •Погрешности определения пористости и нефтегазонасыщенности пород по удельному сопротивлению
- •§ 44. Разделение нефтеносных и газоносных пластов
- •§ 45. Выделение переходной зоны
- •§ 45. Выделение переходной зоны
- •46. Оценка проницаемости пород
- •§ 46. Оценка проницаемости пород
- •Оценка проницаемости по удельному сопротивлению
- •Оценка проницаемости по градиенту удельного сопротивления
- •Гидродинамический каротаж
- •Глава XIV Методы контроля разработки нефтяных и газовых месторождений
- •Глава XIV
- •§ 47. Использование данных термометрии при контроле разработки залежи
- •§ 47. Использование данных термометрии при контроле разработки залежи
- •§ 48. Определение положения водонефтяного и газожидкостного контактов и контроль обводнения скважин
- •§ 48. Определение положения водонефтяного и газожидкостного контактов и контроль обводнения скважин
- •§ 49. Расходометрия скважин
- •§ 49. Расходометрия скважин
- •§ 50. Исследование состава флюидов в стволе скважины
- •§ 50. Исследование состава флюидов в стволе скважины
- •Глава XV Автоматизированная обработка и интерпретация результатов геофизических исследований скважин
- •Глава XV
- •§ 51. Схемы автоматизированной обработки и интерпретации данных гис
- •§ 51. Схемы автоматизированной обработки и интерпретации данных гис
- •§ 52. Сбор данных гис в цифровой форме
- •§ 52. Сбор данных гис в цифровой форме
- •Регистрация данных гис
- •Первичная обработка данных гис
- •§ 53. Обработка и интерпретация данных гис
- •§ 54. Обоснование комплекса геофизических исследований скважин
- •§ 54. Обоснование комплекса геофизических исследований скважин
- •§ 55. Основные требования к качеству измерений при гис
- •§ 55. Основные требования к качеству измерений при гис
- •Список литературы
§ 49. Расходометрия скважин
§ 49. Расходометрия скважин
Расходометрия заключается в измерении скорости перемещения жидкости в колонне скважины спускаемыми в нее на каротажном кабеле приборами, получившими название расходомеров. С их помощью решаются следующие основные задачи: в действующих скважинах выделяют интервал притока или поглощения жидкости, в остановленных выявляют наличие перетока жидкости по стволу скважины между перфорированными пластами, изучают суммарный дебит или расход жидкости отдельных пластов, разделенных неперфорированными интервалами строят профили притока или приемистости по отдельным участкам пласта или для пласта в целом.
Различают гидродинамические и термокондуктивные расходомеры, которые по условиям измерения делятся на пакерные и беспакерные.
Измерительным элементом гидродинамического расходомера является турбинка с лопастями, расположенная в канале так, что через нее проходит поток жидкости, заставляющий ее вращаться. При вращении турбинка приводит в действие магнитный прерыватель тока, по показаниям которого определяют частоту ее вращения. Чем выше дебит, тем быстрее вращается турбинка и тем больше импульсов в единицу времени поступит в измерительный канал. Частота импульсов преобразуется блоком частотомера в пропорциональную ей величину напряжения и по линии связи поступает на поверхность, где фиксируется регистрирующим прибором.
Применяют пакерные, с управляемым пакером и беспакерные приборы. Пакерный прибор РГД-5 дает возможность измерять весь приток жидкости в эксплуатационной колонне нагнетательной скважины диаметром 146—168 мм. Спуск беспакерного прибора или с управляемым пакером ДГД-8 возможен также при наличии в колонне насосно-компрессорных труб диаметром 50,8—63,5 мм. Для градуирования расходомеров каждый комплект глубинных приборов снабжается градуировочной характеристикой— зависимостью показаний прибора n(об/мин) от расхода жидкости (м3/сут).
Гидродинамический расходомер опускается в скважину до кровли верхнего перфорированного интервала, и при открытом пакере регистрируются показания калибратора, нулевые линии и показания суммарного дебита. Затем при закрытом пакере прибор опускается на забой. Запись диаграммы производится непрерывно при подъеме прибора с прикрытым пакером до воронки насосно-компрессорных труб со скоростью 60—80 м/ч в масштабе глубин 1:200. На участках кривой с резкими изменениями дебита производят точечные измерения через 0,4 м, на участках кривой с малыми изменениями дебита — через 1—2 м. Определения выполняют с полностью открытым пакером. По непрерывным измерениям диаграмм расходометрии качественно оценивают места притока (приемистости), а также выявляют нарушения герметичности колонны в неперфорированных интервалах. По данным точечных измерений, проводимых последовательно и равномерно в заданных точках, дается количественная оценка распределения расхода жидкости по пластам и строится интегральная расходограмма. Полученная кривая показывает количество жидкости, проходящей через сечение скважины на различных глубинах (рис. 176, кривая 1).
Интегральная кривая характеризует суммарный дебит всех пластов, расположенных ниже данной глубины. В интервалах притока на такой кривой наблюдается рост показаний, а в интервалах поглощения — их уменьшение. Интегральная расходограмма служит для построения дифференциальной зависимости (см. рис. 176, кривая 2), характеризующей интенсивность притока (поглощения) на единицу мощности пласта.
Из анализа расходограмм следует, что не все проницаемые прослои, выделяемые в разрезе по геолого-геофизическим данным, работают. Отсутствие поступления нефти из пласта в скважину возможно из-за малой проницаемости и градиента перепада давления в пласте, загрязнения прискважинной зоны, неполноценной перфорации колонны и др. В примере исследования профиля притока расходомером и плотномером (рис. 177) измерения, проведенные через 1,5 мес после введения скважины в эксплуатацию, показали, что в отдаче нефти участвует только верхняя часть пласта мощностью 2,6 м. Для улучшения поступления нефтей из пласта в колонну скважины в интервале 1325— 1333,5 м была проведена дополнительная перфорация, в результате дебит безводной нефти возрос с 39 до 60 м3/сут. Повторные измерения показали, что мощность отдающего интервала увеличилась на 7,2 м.
Основным преимуществом гидродинамических расходомеров является сравнительно небольшое влияние состава флюида на результаты измерений и возможность количественной оценки притока жидкости из интервала перфорации. Недостатки их следующие: низкая чувствительность к малым дебитам (1— 5 м3/сут), частые отказы из-за наличия в жидкости механических примесей (песка, глинистых частиц).
Термокондуктивные расходомеры с термодинамическим датчиком СТД основаны на зависимости степени охлаждения нагреваемого сопротивления, помещенного в поток, от средней линейной скорости потока. Они предназначены для исследования фонтанирующих скважин через насосно-компрессорные трубы и глубинно-насосных скважин через межтрубное пространство.
Измерительная установка термокондуктивного расходомера состоит из помещенной в поток непрерывно подогреваемой электрическим током спирали и скважинного термометра для измерения ее температуры. Место притока флюида в скважину отмечается уменьшением температуры. Термокондуктивные расходомеры (СТД), достаточно чувствительные к притокам с малым дебитом, надежны в эксплуатации и нечувствительны к выносу песка потоком жидкости. Однако с помощью этих расходомеров нельзя проводить количественные оценки интенсивности потока при неоднородных жидкостях. Профиль притока можно получить только при однокомпонентной жидкости.
Расходограммы, полученные приборами СТД, имеют более сложную форму (см. рис. 176,б), чем расходограмма, полученная гидродинамическим расходомером. По разнице между показаниями против нижнего и верхнего интервалов (непосредственно после минимума) количественно определяют, используя градуировочную кривую, дебит однокомпонентной жидкости, текущей по стволу скважины. Если в скважине течет многофазная смесь, то из-за чувствительности показаний к характеру флюида интервалы притока выделяются без количественного определения их дебитов, лишь качественно. Используя чувствительность термокондуктивных расходомеров к характеру флюида, по комплексу расходограмм, полученных гидродинамическим и термокондуктивным приборами, можно судить о составе жидкости. В действующих скважинах в зависимости от решаемых задач и конкретных геолого-технических условий применяют тот или иной тип расходомера или совместно.