- •С.А. Бахвалова, в.В. Курганов Исследование свч-устройств с помощью пакета программ Microwave Office Лабораторный практикум по курсу «Приборы свч»
- •Введение
- •Микрополосковая линия передачи
- •Связанные мпл
- •Материалы подложек и проводников
- •Фильтры
- •Микрополосковые фильтры
- •Изучение свч устройств с помощью программы Microwave Office Краткое описание интерфейса и основных операций программы Microwave Office
- •Компоненты среды проектирования awr
- •Создание, открытие и сохранение проектов
- •Создание электрической схемы
- •Введение в схему микрополосковых элементов
- •Создание топологии в mwo
- •Представление результатов моделирования схемы
- •Проведение моделирования
- •Настройка схемы
- •Расчет характеристик мпл с использованием программы Microwave Office
- •Экспериментальная часть
- •Лабораторное задание
- •Методика выполнения работы
- •Требования к отчету
- •Контрольные вопросы
- •Формулы для расчета параметров транзистора и мшу
- •Изучение мшу с помощью программы Microwave Office
- •Основные операции при создании схемы мшу
- •Представление результатов моделирования
- •Экспериментальная часть Описание схемы мшу
- •Выбор материала подложки и толщины проводящего слоя проводится в соответствии с заданным вариантом согласно табл.1. Частота f0 указана в той же таблице.
- •Варианты заданий
- •Лабораторное задание
- •Методика выполнения работы
- •Требования к отчету
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №3 Исследование транзисторного усилителя мощности
- •Теоретические сведения
- •Цепи согласования
- •Цепи питания и смещения
- •Режимы работы активного элемента
- •Нелинейное моделирование в программе Microwave Office Модель полевого транзистора
- •Метод гармонического баланса
- •Экспериментальная часть Описание схемы ум
- •Методика расчета согласующих цепей
- •Лабораторное задание
- •Методика выполнения работы
- •Параметры модели Ангелова
- •Требования к отчету
- •Контрольные вопросы
- •Петлевой фазовращатель
- •Моделирование петлевого фазовращателя с помощью программы Microwave Office Модель pin-диода
- •Синтаксис уравнений в Microwave Office
- •Правила записи уравнений
- •Глобальные уравнения
- •Встроенные уравнения
- •Редактирование уравнения
- •Описание модели фазовращателя
- •Экспериментальная часть Описание изучаемой схемы фазовращателя
- •Вход и выход фазовращателя нагружены на сопротивление 50 Ом. Длины отрезков мпл l3 - l6 могут изменяться в процессе настройки. Ширина линий w3 - w6 также может изменяться.
- •Параметры диода hsmp3890
- •Выбор рабочей частоты f0 и электрической длины петли φ1 проводится в соответствии с заданным вариантом согласно табл.3. Частота указана в той же таблице. Лабораторное задание
- •Методика выполнения работы
- •Требования к отчету
- •Контрольные вопросы
- •Литература
- •Содержание
Методика выполнения работы
1. Вызовите на экран монитора программу Microwave Office.
2. Создайте свой проект, как описано в [4, 5]. Дайте имя проекту FV_n, где n - номер варианта. Определите единицы измерений в проекте.
3. Рассчитайте опорную топологию фазовращателя, используя аналитические формулы и блок TXLine.
4. Создайте схему фазовращателя.
4.1. Создайте схему ON (диод выключен) и присвойте ей имя ON_n, где n - номер варианта. Соберите схему в соответствии с рис.9 и 10. При создании схемы и вводе в схему подложки используйте [5]. При заполнении таблицы свойств диода установите RJ = 1000 Ohm.
4.2. Создайте схему OFF (диод включен) и присвойте ей имя OFF_n. При заполнении таблицы свойств диода установите RJ = 2,5 Ohm.
Примечание: Схемы ON и OFF отличаются только параметром диода RJ.
4.3. Введите геометрические размеры отрезков МПЛ 1 - 6 и 5 через Global definition. Для этого выберите в дереве проекта папку Global definition и после активизации диалогового окна глобальных уравнений и введите уравнения. Для того чтобы добавить в блок новое глобальное уравнение, выберите команду Add - Equations в главном меню или нажмите кнопку на панели инструментов. После нажатия на эту кнопку указатель мыши приобретет вид курсора с прямоугольником, являющимся полем для введения выражения. После установки поля уравнений в окне Global Definition щелкните левой кнопкой мыши и введите уравнение, после чего нажмите Enter. Если уравнение сохранило черный цвет, значит, оно введено правильно, если нет, то уравнение содержит ошибку. Пример ввода глобальных уравнений представлен на рис.11,a.
а б
Рис.11. Описание длин отрезков МПЛ через глобальные уравнения
Глобальные уравнения позволяют изменять значения элементов в двух схемах одновременно при их настройке. Следует учесть, что при наборе схемы определенным параметрам элементов (а именно, МПЛ) нужно присваивать не числовое значение, а переменную, которая описывается через глобальные уравнения (рис.11,б).
При вводе уравнений за начальные значения длин отрезков 4 - 6 принять:
L4 = l1/2; L5 = l2; L6 = 0.
5. Переключитесь на дерево проекта и определите частотный диапазон моделирования fmin - fmax с приблизительным шагом в 0,01f0 Частота f0 задана в табл.3.
6. Создайте график потерь и добавьте измерения S21 для схем ON и OFF в соответствии с описанием [4]. В качестве единиц измерения выбрите dB.
7. Создайте графики VSWR1 и VSWR2.
8. Создайте график фазы фазовращателя, которая представляет собой разность фаз коэффициента передачи S21 для схем ON и OFF.
Д
Рис.12. Выходные
уравнения
Первыми двумя уравнениями осуществляется присвоение переменным fON и fOFF измерений, соответствующих фазам коэффициента передачи S21 для схем ON и OFF. Поскольку в программе аргументы коэффициента передачи рассчитываются в радианах, то последующие уравнения переводят фазы из радиан в градусы для удобства. Последнее уравнение рассчитывает фазу фазовращателя.
Следует учесть, что при выводе этого измерения на график требуется выбрать переключатель Real (рис.13).
9. Проведите анализ схемы. На экране появятся графики коэффициента передачи фазовращателя S21 для схем ON и OFF, графики VSWR1 и VSWR2 и график фазы. Перед расчетом выведите на график параметры фазовращателя, заданные в техническом задании. Эта процедура описана в [5].
Рис.13. Измерения к графику разности фаз
10. Настройте фазовращатель на соответствие требованиям технического задания, используя процедуру настройки или оптимизации. Эти процедуры описаны в [5].
11. Измените длину шлейфа L5 (см. рис.10) и повторите п.9. Результаты исследования оформите в виде графиков S21, VSWR, фазы от L5 для пяти точек на частоте f0
12. Измените длину отрезка L4 (рис.10) и повторите п.9. Результаты исследования оформите в виде графиков S21, VSWR, фазы от L4 для пяти точек на частоте f0
