- •Введение
- •1. Краткая характеристика оао «Сургутнефтегаз»
- •2. Основные производственные и финансовые показатели деятельности компании
- •2.1 Расчет показателей динамики стоимости имущества оао «Сургутнефтегаз» в 2009 – 2013 годах
- •Базисные показатели ряда динамики
- •2.2 Построение линейного уравнения тренда роста балансовой стоимости имущества оао «Сургутнефтега»
- •Однофакторный дисперсионный анализ
- •Коэффициент эластичности
- •Эмпирическое корреляционное отношение
- •Коэффициент детерминации
- •2.3 Анализ точности определения оценок параметров уравнения тренда.
- •2.4 Прогноз роста источников формирования имущества оао «Сургутнефтегаз»
- •Проверка гипотез относительно коэффициентов линейного уравнения тренда
- •2.5 Статистический анализ Отчета о финансовых результатах оао «Сургутнефтегаз» Исходные данные представлены в таблице 5.
- •Базисные показатели ряда динамики
- •Расчет средних характеристик рядов
- •Однофакторный дисперсионный анализ
- •Коэффициент эластичности
- •Эмпирическое корреляционное отношение
- •2. Анализ точности определения оценок параметров уравнения тренда.
- •Интервальный прогноз
- •3. Проверка гипотез относительно коэффициентов линейного уравнения тренда.
- •2.6 Статистический анализ финансово – производственных показателей
- •Расчет показателей динамики добычи нефти в период с 2003 по 2012 годы
- •Цепные показатели ряда динамики
- •Базисные показатели ряда динамики
- •Расчет средних характеристик рядов
- •Расчет параметров уравнения тренда
- •2.7 Однофакторный дисперсионный анализ
- •2.8 Анализ точности определения оценок параметров уравнения тренда,
- •2.9 Интервальный прогноз
- •2013 Год: (52,58;72,52) тыс. Тонн
- •2014 Год: (52,24;73,24) тыс. Тонн
- •2015 Год: (51,87;74,01) тыс. Тонн
- •2.10 Проверка гипотез относительно коэффициентов линейного уравнения тренда
- •2.11 Проверка гипотезы о зависимости объемов добычи (тыс. Тонн) от количества среднедействующих скважин в оао «Сургутнефтегаз» Корреляционный анализ. Уравнение парной регрессии.
- •1. Параметры уравнения регрессии.
- •1.1. Коэффициент корреляции
- •3.9 Уравнение регрессии (оценка уравнения регрессии). Коэффициент эластичности
- •Бета – коэффициент
- •Эмпирическое корреляционное отношение.
- •2.12 Оценка параметров уравнения регрессии. Анализ точности определения оценок коэффициентов регрессии.
- •2.13 Доверительные интервалы для зависимой переменной.
- •2.14 Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
- •2.15 Дисперсионный анализ
- •2) При помощи теста ранговой корреляции Спирмена.
- •3. Проверка зависимости добычи нефти от объема капиталовложений
- •3.1 Корреляционный анализ. Уравнение парной регрессии.
- •1. Параметры уравнения регрессии
- •3.2 Коэффициент корреляции
- •3.3 Уравнение регрессии (оценка уравнения регрессии).
- •3.4 Коэффициент детерминации.
- •3.5 Оценка параметров уравнения регрессии. Значимость коэффициента корреляции
- •3.6 Интервальная оценка для коэффициента корреляции (доверительный интервал).
- •3.7 Анализ точности определения оценок коэффициентов регрессии.
- •3.8 Доверительные интервалы для зависимой переменной (добыча нефти)
- •3.9 Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
- •Доверительный интервал для коэффициентов уравнения регрессии
- •Дисперсионный анализ
- •Список литературы
Однофакторный дисперсионный анализ
Средние значения
Дисперсия
Среднеквадратическое отклонение
Коэффициент эластичности
Коэффициент эластичности представляет собой показатель силы связи фактора t с результатом у, показывающий, на сколько процентов изменится значение у при изменении значения фактора на 1%.
Коэффициент эластичности меньше 1.
Следовательно, при изменении t на 1%, Y изменится менее чем на 1%. Другими словами - влияние t на Y не существенно.
Эмпирическое корреляционное отношение
Эмпирическое корреляционное отношение вычисляется для всех форм связи и служит для измерение тесноты зависимости. Изменяется в пределах [0;1].
где
В отличие от линейного коэффициента корреляции он характеризует тесноту нелинейной связи и не характеризует ее направление. Изменяется в пределах [0;1].
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 < η < 0.3: слабая;
0.3 < η < 0.5: умеренная;
0.5 < η < 0.7: заметная;
0.7 < η < 0.9: высокая;
0.9 < η < 1: весьма высокая;
Полученная величина свидетельствует о том, что изменение временного периода t существенно влияет на y.
Коэффициент детерминации.
т.е. в 78.43% случаев влияет на изменение данных. Точность подбора уравнения тренда - высокая.
t |
y |
y(t) |
(y-ycp)2 |
(y-y(t))2 |
(t-tp)2 |
(y-y(t)) : y |
1 |
503306 |
506302.2 |
12446392219.56 |
8977214.44 |
4 |
0.00595 |
2 |
596915 |
560585.8 |
322360479.36 |
1319810772.64 |
1 |
0.0609 |
3 |
598934 |
614869.4 |
253936973.16 |
253936973.16 |
0 |
0.0266 |
4 |
604021 |
669153 |
117687782.56 |
4242177424 |
1 |
0.11 |
5 |
771171 |
723436.6 |
24430190162.56 |
2278572943.36 |
4 |
0.0619 |
15 |
3074347 |
3074347 |
37570567617.2 |
8103475327.6 |
10 |
0.26 |
2. Анализ точности определения оценок параметров уравнения тренда.
где m = 1 - количество влияющих факторов в модели тренда.
По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;α/2) = (3;0.025) = 3.182
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений при прогнозе в 2016 году:
(452018,6 + 54283,6*3 - 3,182*181161,47 ; 452018,6 + 54283,6*3 - 3,182*181161,47)
Следовательно, ожидаемая выручка в 2016 году составит от (433707,93; 796030,87) млн. руб
Интервальный прогноз
Определим среднеквадратическую ошибку прогнозируемого показателя.
m = 1 - количество влияющих факторов в уравнении тренда.
Uy = yn+L ± K
где
L - период упреждения; уn+L - точечный прогноз по модели на (n + L)-й момент времени; n - количество наблюдений во временном ряду; Sy - стандартная ошибка прогнозируемого показателя; Tтабл - табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2.
По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;α/2) = (3;0,025) = 3,182
Точечный прогноз, t = 6: (2014 год)
y(6) = 54283,6*6 + 452018,6 = 777720,2
777720,2 - 207546,52 = 570173,68 ; 777720,2 + 207546,52 = 985266,72
Интервальный прогноз:
t = 6 (2014 год): ВР= (570173,68;985266,72) млн. руб
Точечный прогноз,
t = 7 (2015 год): ВР = 54283,6*7 + 452018,6 = 832003,8
832003,8 - 239654,08 = 592349,72 ; 832003,8 + 239654,08 = 1071657,88
Интервальный прогноз:
t = 7 (2016 год) (592349,72;1071657,88) млн. руб
