- •Введение
- •1. Краткая характеристика оао «Сургутнефтегаз»
- •2. Основные производственные и финансовые показатели деятельности компании
- •2.1 Расчет показателей динамики стоимости имущества оао «Сургутнефтегаз» в 2009 – 2013 годах
- •Базисные показатели ряда динамики
- •2.2 Построение линейного уравнения тренда роста балансовой стоимости имущества оао «Сургутнефтега»
- •Однофакторный дисперсионный анализ
- •Коэффициент эластичности
- •Эмпирическое корреляционное отношение
- •Коэффициент детерминации
- •2.3 Анализ точности определения оценок параметров уравнения тренда.
- •2.4 Прогноз роста источников формирования имущества оао «Сургутнефтегаз»
- •Проверка гипотез относительно коэффициентов линейного уравнения тренда
- •2.5 Статистический анализ Отчета о финансовых результатах оао «Сургутнефтегаз» Исходные данные представлены в таблице 5.
- •Базисные показатели ряда динамики
- •Расчет средних характеристик рядов
- •Однофакторный дисперсионный анализ
- •Коэффициент эластичности
- •Эмпирическое корреляционное отношение
- •2. Анализ точности определения оценок параметров уравнения тренда.
- •Интервальный прогноз
- •3. Проверка гипотез относительно коэффициентов линейного уравнения тренда.
- •2.6 Статистический анализ финансово – производственных показателей
- •Расчет показателей динамики добычи нефти в период с 2003 по 2012 годы
- •Цепные показатели ряда динамики
- •Базисные показатели ряда динамики
- •Расчет средних характеристик рядов
- •Расчет параметров уравнения тренда
- •2.7 Однофакторный дисперсионный анализ
- •2.8 Анализ точности определения оценок параметров уравнения тренда,
- •2.9 Интервальный прогноз
- •2013 Год: (52,58;72,52) тыс. Тонн
- •2014 Год: (52,24;73,24) тыс. Тонн
- •2015 Год: (51,87;74,01) тыс. Тонн
- •2.10 Проверка гипотез относительно коэффициентов линейного уравнения тренда
- •2.11 Проверка гипотезы о зависимости объемов добычи (тыс. Тонн) от количества среднедействующих скважин в оао «Сургутнефтегаз» Корреляционный анализ. Уравнение парной регрессии.
- •1. Параметры уравнения регрессии.
- •1.1. Коэффициент корреляции
- •3.9 Уравнение регрессии (оценка уравнения регрессии). Коэффициент эластичности
- •Бета – коэффициент
- •Эмпирическое корреляционное отношение.
- •2.12 Оценка параметров уравнения регрессии. Анализ точности определения оценок коэффициентов регрессии.
- •2.13 Доверительные интервалы для зависимой переменной.
- •2.14 Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
- •2.15 Дисперсионный анализ
- •2) При помощи теста ранговой корреляции Спирмена.
- •3. Проверка зависимости добычи нефти от объема капиталовложений
- •3.1 Корреляционный анализ. Уравнение парной регрессии.
- •1. Параметры уравнения регрессии
- •3.2 Коэффициент корреляции
- •3.3 Уравнение регрессии (оценка уравнения регрессии).
- •3.4 Коэффициент детерминации.
- •3.5 Оценка параметров уравнения регрессии. Значимость коэффициента корреляции
- •3.6 Интервальная оценка для коэффициента корреляции (доверительный интервал).
- •3.7 Анализ точности определения оценок коэффициентов регрессии.
- •3.8 Доверительные интервалы для зависимой переменной (добыча нефти)
- •3.9 Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
- •Доверительный интервал для коэффициентов уравнения регрессии
- •Дисперсионный анализ
- •Список литературы
3.4 Коэффициент детерминации.
R2= 0.08772 = 0.00769
т.е. в 0.77 % случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - низкая. Остальные 99.23 % изменения Y объясняются факторами, не учтенными в модели (а также ошибками спецификации).
Для оценки качества параметров регрессии построим расчетную таблицу (табл. 2)
x |
y |
y(x) |
(yi-ycp)2 |
(y-y(x))2 |
(xi-xcp)2 |
|y - yx|:y |
37211 |
54000 |
60680.08 |
49702500 |
44623529.82 |
3497764335.61 |
0.12 |
42368 |
59500 |
60712.34 |
2402500 |
1469768.53 |
2914369428.01 |
0.0204 |
52361 |
63900 |
60774.84 |
8122500 |
9766603.63 |
1935287265.61 |
0.0489 |
68516 |
65600 |
60875.89 |
20702500 |
22317231.7 |
774893001.61 |
0.072 |
88133 |
64500 |
60998.59 |
11902500 |
12259893.63 |
67566756.01 |
0.0543 |
96333 |
61700 |
61049.88 |
422500 |
422661.82 |
396.01 |
0.0105 |
128903 |
59600 |
61253.59 |
2102500 |
2734364.64 |
1059509010.01 |
0.0277 |
137861 |
59500 |
61309.62 |
2402500 |
3274728.63 |
1722922365.61 |
0.0304 |
146258 |
60800 |
61362.14 |
62500 |
316003.55 |
2490519006.01 |
0.00925 |
165585 |
61400 |
61483.03 |
122500 |
6893.43 |
4793083670.41 |
0.00135 |
963529 |
610500 |
610500 |
97945000 |
97191679.38 |
19255915234.9 |
0.4 |
3.5 Оценка параметров уравнения регрессии. Значимость коэффициента корреляции
Для того чтобы при уровне значимости α проверить нулевую гипотезу о равенстве нулю генерального коэффициента корреляции нормальной двумерной случайной величины при конкурирующей гипотезе H1 ≠ 0, надо вычислить наблюдаемое значение критерия
и по таблице критических точек распределения Стьюдента, по заданному уровню значимости α и числу степеней свободы k = n - 2 найти критическую точку tкрит двусторонней критической области. Если tнабл < tкрит оснований отвергнуть нулевую гипотезу. Если |tнабл| > tкрит — нулевую гипотезу отвергают.
По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=8 находим tкрит:
tкрит (n-m-1;α/2) = (8;0.025) = 2.306
где m = 1 - количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл < tкрит, то принимаем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - не значим
В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.
