- •Введение
- •1. Краткая характеристика оао «Сургутнефтегаз»
- •2. Основные производственные и финансовые показатели деятельности компании
- •2.1 Расчет показателей динамики стоимости имущества оао «Сургутнефтегаз» в 2009 – 2013 годах
- •Базисные показатели ряда динамики
- •2.2 Построение линейного уравнения тренда роста балансовой стоимости имущества оао «Сургутнефтега»
- •Однофакторный дисперсионный анализ
- •Коэффициент эластичности
- •Эмпирическое корреляционное отношение
- •Коэффициент детерминации
- •2.3 Анализ точности определения оценок параметров уравнения тренда.
- •2.4 Прогноз роста источников формирования имущества оао «Сургутнефтегаз»
- •Проверка гипотез относительно коэффициентов линейного уравнения тренда
- •2.5 Статистический анализ Отчета о финансовых результатах оао «Сургутнефтегаз» Исходные данные представлены в таблице 5.
- •Базисные показатели ряда динамики
- •Расчет средних характеристик рядов
- •Однофакторный дисперсионный анализ
- •Коэффициент эластичности
- •Эмпирическое корреляционное отношение
- •2. Анализ точности определения оценок параметров уравнения тренда.
- •Интервальный прогноз
- •3. Проверка гипотез относительно коэффициентов линейного уравнения тренда.
- •2.6 Статистический анализ финансово – производственных показателей
- •Расчет показателей динамики добычи нефти в период с 2003 по 2012 годы
- •Цепные показатели ряда динамики
- •Базисные показатели ряда динамики
- •Расчет средних характеристик рядов
- •Расчет параметров уравнения тренда
- •2.7 Однофакторный дисперсионный анализ
- •2.8 Анализ точности определения оценок параметров уравнения тренда,
- •2.9 Интервальный прогноз
- •2013 Год: (52,58;72,52) тыс. Тонн
- •2014 Год: (52,24;73,24) тыс. Тонн
- •2015 Год: (51,87;74,01) тыс. Тонн
- •2.10 Проверка гипотез относительно коэффициентов линейного уравнения тренда
- •2.11 Проверка гипотезы о зависимости объемов добычи (тыс. Тонн) от количества среднедействующих скважин в оао «Сургутнефтегаз» Корреляционный анализ. Уравнение парной регрессии.
- •1. Параметры уравнения регрессии.
- •1.1. Коэффициент корреляции
- •3.9 Уравнение регрессии (оценка уравнения регрессии). Коэффициент эластичности
- •Бета – коэффициент
- •Эмпирическое корреляционное отношение.
- •2.12 Оценка параметров уравнения регрессии. Анализ точности определения оценок коэффициентов регрессии.
- •2.13 Доверительные интервалы для зависимой переменной.
- •2.14 Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
- •2.15 Дисперсионный анализ
- •2) При помощи теста ранговой корреляции Спирмена.
- •3. Проверка зависимости добычи нефти от объема капиталовложений
- •3.1 Корреляционный анализ. Уравнение парной регрессии.
- •1. Параметры уравнения регрессии
- •3.2 Коэффициент корреляции
- •3.3 Уравнение регрессии (оценка уравнения регрессии).
- •3.4 Коэффициент детерминации.
- •3.5 Оценка параметров уравнения регрессии. Значимость коэффициента корреляции
- •3.6 Интервальная оценка для коэффициента корреляции (доверительный интервал).
- •3.7 Анализ точности определения оценок коэффициентов регрессии.
- •3.8 Доверительные интервалы для зависимой переменной (добыча нефти)
- •3.9 Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
- •Доверительный интервал для коэффициентов уравнения регрессии
- •Дисперсионный анализ
- •Список литературы
3. Проверка зависимости добычи нефти от объема капиталовложений
3.1 Корреляционный анализ. Уравнение парной регрессии.
Для оценки параметров α и β - используют МНК (метод наименьших квадратов).
Система нормальных уравнений.
a•n + b∑x = ∑y
a∑x + b∑x2 = ∑y•x
Для наших данных система уравнений имеет вид
10a + 963529 b = 610500
963529 a + 112094728619 b = 58943885800
Из первого уравнения выражаем а и подставим во второе уравнение:
Получаем эмпирические коэффициенты регрессии:
b = 0.00625, a = 60447.3406
Уравнение регрессии (эмпирическое уравнение регрессии):
y = 0.00625 x + 60447.3406
Для расчета параметров регрессии построим расчетную таблицу (табл. 1)
X |
Y |
x2 |
y2 |
x • y |
37211 |
54000 |
1384658521 |
2916000000 |
2009394000 |
42368 |
59500 |
1795047424 |
3540250000 |
2520896000 |
52361 |
63900 |
2741674321 |
4083210000 |
3345867900 |
68516 |
65600 |
4694442256 |
4303360000 |
4494649600 |
88133 |
64500 |
7767425689 |
4160250000 |
5684578500 |
96333 |
61700 |
9280046889 |
3806890000 |
5943746100 |
128903 |
59600 |
16615983409 |
3552160000 |
7682618800 |
137861 |
59500 |
19005655321 |
3540250000 |
8202729500 |
146258 |
60800 |
21391402564 |
3696640000 |
8892486400 |
165585 |
61400 |
27418392225 |
3769960000 |
10166919000 |
963529 |
610500 |
112094728619 |
37368970000 |
58943885800 |
Х – капиталовложения, Y – добыча нефти
Рис.6. Поле корреляции
1. Параметры уравнения регрессии
Выборочные средние.
Выборочные дисперсии:
Среднеквадратическое отклонение
3.2 Коэффициент корреляции
Ковариация
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:
Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 < rxy < 0.3: слабая;
0.3 < rxy < 0.5: умеренная;
0.5 < rxy < 0.7: заметная;
0.7 < rxy < 0.9: высокая;
0.9 < rxy < 1: весьма высокая;
В нашем примере связь между признаком Y фактором X слабая и прямая.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:
3.3 Уравнение регрессии (оценка уравнения регрессии).
Линейное уравнение регрессии имеет вид y = 0.00625 x + 60447.34
Коэффициентам уравнения линейной регрессии можно придать экономический смысл.
Коэффициент регрессии b = 0.00625 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 0.00625.
Коэффициент a = 60447.34 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и х определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь прямая.
Ошибка аппроксимации.
Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве регрессии.
Эмпирическое корреляционное отношение.
где
Индекс корреляции.
Для линейной регрессии индекс корреляции равен коэффициенту корреляции rxy = 0.0877.
Полученная величина свидетельствует о том, что фактор x не существенно влияет на y
Для любой формы зависимости теснота связи определяется с помощью множественного коэффициента корреляции:
Данный коэффициент является универсальным, так как отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. При построении однофакторной корреляционной модели коэффициент множественной корреляции равен коэффициенту парной корреляции rxy.
В отличие от линейного коэффициента корреляции он характеризует тесноту нелинейной связи и не характеризует ее направление. Изменяется в пределах [0;1].
Теоретическое корреляционное отношение для линейной связи равно коэффициенту корреляции rxy.
