Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсовая алия.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
773.63 Кб
Скачать

3. Проверка зависимости добычи нефти от объема капиталовложений

3.1 Корреляционный анализ. Уравнение парной регрессии.

Для оценки параметров α и β - используют МНК (метод наименьших квадратов).

Система нормальных уравнений.

a•n + b∑x = ∑y

a∑x + b∑x2 = ∑y•x

Для наших данных система уравнений имеет вид

10a + 963529 b = 610500

963529 a + 112094728619 b = 58943885800

Из первого уравнения выражаем а и подставим во второе уравнение:

Получаем эмпирические коэффициенты регрессии:

b = 0.00625, a = 60447.3406

Уравнение регрессии (эмпирическое уравнение регрессии):

y = 0.00625 x + 60447.3406

Для расчета параметров регрессии построим расчетную таблицу (табл. 1)

X

Y

x2

y2

x • y

37211

54000

1384658521

2916000000

2009394000

42368

59500

1795047424

3540250000

2520896000

52361

63900

2741674321

4083210000

3345867900

68516

65600

4694442256

4303360000

4494649600

88133

64500

7767425689

4160250000

5684578500

96333

61700

9280046889

3806890000

5943746100

128903

59600

16615983409

3552160000

7682618800

137861

59500

19005655321

3540250000

8202729500

146258

60800

21391402564

3696640000

8892486400

165585

61400

27418392225

3769960000

10166919000

963529

610500

112094728619

37368970000

58943885800

Х – капиталовложения, Y – добыча нефти

Рис.6. Поле корреляции

1. Параметры уравнения регрессии

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

3.2 Коэффициент корреляции

Ковариация

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < rxy < 0.3: слабая;

0.3 < rxy < 0.5: умеренная;

0.5 < rxy < 0.7: заметная;

0.7 < rxy < 0.9: высокая;

0.9 < rxy < 1: весьма высокая;

В нашем примере связь между признаком Y фактором X слабая и прямая.

Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:

3.3 Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 0.00625 x + 60447.34

Коэффициентам уравнения линейной регрессии можно придать экономический смысл.

Коэффициент регрессии b = 0.00625 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 0.00625.

Коэффициент a = 60447.34 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.

Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.

Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.

Связь между у и х определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь прямая.

Ошибка аппроксимации.

Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве регрессии.

Эмпирическое корреляционное отношение.

где

Индекс корреляции.

Для линейной регрессии индекс корреляции равен коэффициенту корреляции rxy = 0.0877.

Полученная величина свидетельствует о том, что фактор x не существенно влияет на y

Для любой формы зависимости теснота связи определяется с помощью множественного коэффициента корреляции:

Данный коэффициент является универсальным, так как отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. При построении однофакторной корреляционной модели коэффициент множественной корреляции равен коэффициенту парной корреляции rxy.

В отличие от линейного коэффициента корреляции он характеризует тесноту нелинейной связи и не характеризует ее направление. Изменяется в пределах [0;1].

Теоретическое корреляционное отношение для линейной связи равно коэффициенту корреляции rxy.