- •Введение
- •1. Краткая характеристика оао «Сургутнефтегаз»
- •2. Основные производственные и финансовые показатели деятельности компании
- •2.1 Расчет показателей динамики стоимости имущества оао «Сургутнефтегаз» в 2009 – 2013 годах
- •Базисные показатели ряда динамики
- •2.2 Построение линейного уравнения тренда роста балансовой стоимости имущества оао «Сургутнефтега»
- •Однофакторный дисперсионный анализ
- •Коэффициент эластичности
- •Эмпирическое корреляционное отношение
- •Коэффициент детерминации
- •2.3 Анализ точности определения оценок параметров уравнения тренда.
- •2.4 Прогноз роста источников формирования имущества оао «Сургутнефтегаз»
- •Проверка гипотез относительно коэффициентов линейного уравнения тренда
- •2.5 Статистический анализ Отчета о финансовых результатах оао «Сургутнефтегаз» Исходные данные представлены в таблице 5.
- •Базисные показатели ряда динамики
- •Расчет средних характеристик рядов
- •Однофакторный дисперсионный анализ
- •Коэффициент эластичности
- •Эмпирическое корреляционное отношение
- •2. Анализ точности определения оценок параметров уравнения тренда.
- •Интервальный прогноз
- •3. Проверка гипотез относительно коэффициентов линейного уравнения тренда.
- •2.6 Статистический анализ финансово – производственных показателей
- •Расчет показателей динамики добычи нефти в период с 2003 по 2012 годы
- •Цепные показатели ряда динамики
- •Базисные показатели ряда динамики
- •Расчет средних характеристик рядов
- •Расчет параметров уравнения тренда
- •2.7 Однофакторный дисперсионный анализ
- •2.8 Анализ точности определения оценок параметров уравнения тренда,
- •2.9 Интервальный прогноз
- •2013 Год: (52,58;72,52) тыс. Тонн
- •2014 Год: (52,24;73,24) тыс. Тонн
- •2015 Год: (51,87;74,01) тыс. Тонн
- •2.10 Проверка гипотез относительно коэффициентов линейного уравнения тренда
- •2.11 Проверка гипотезы о зависимости объемов добычи (тыс. Тонн) от количества среднедействующих скважин в оао «Сургутнефтегаз» Корреляционный анализ. Уравнение парной регрессии.
- •1. Параметры уравнения регрессии.
- •1.1. Коэффициент корреляции
- •3.9 Уравнение регрессии (оценка уравнения регрессии). Коэффициент эластичности
- •Бета – коэффициент
- •Эмпирическое корреляционное отношение.
- •2.12 Оценка параметров уравнения регрессии. Анализ точности определения оценок коэффициентов регрессии.
- •2.13 Доверительные интервалы для зависимой переменной.
- •2.14 Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
- •2.15 Дисперсионный анализ
- •2) При помощи теста ранговой корреляции Спирмена.
- •3. Проверка зависимости добычи нефти от объема капиталовложений
- •3.1 Корреляционный анализ. Уравнение парной регрессии.
- •1. Параметры уравнения регрессии
- •3.2 Коэффициент корреляции
- •3.3 Уравнение регрессии (оценка уравнения регрессии).
- •3.4 Коэффициент детерминации.
- •3.5 Оценка параметров уравнения регрессии. Значимость коэффициента корреляции
- •3.6 Интервальная оценка для коэффициента корреляции (доверительный интервал).
- •3.7 Анализ точности определения оценок коэффициентов регрессии.
- •3.8 Доверительные интервалы для зависимой переменной (добыча нефти)
- •3.9 Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
- •Доверительный интервал для коэффициентов уравнения регрессии
- •Дисперсионный анализ
- •Список литературы
2.15 Дисперсионный анализ
При анализе качества модели регрессии используется теорема о разложении дисперсии, согласно которой общая дисперсия результативного признака может быть разложена на две составляющие – объясненную и необъясненную уравнением регрессии дисперсии.
Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
∑(yi - ycp)2 = ∑(y(x) - ycp)2 + ∑(y - y(x))2
где
∑(yi - ycp)2 - общая сумма квадратов отклонений;
∑(y(x) - ycp)2 - сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
∑(y - y(x))2 - остаточная сумма квадратов отклонений.
Источник вариации |
Сумма квадратов |
Число степеней свободы |
Дисперсия на 1 степень свободы |
F-критерий |
Модель |
0.00194 |
1 |
0.00194 |
0 |
Остаточная |
97.94 |
8 |
12.24 |
1 |
Общая |
97.95 |
10-1 |
|
|
Показатели качества уравнения регрессии.
Показатель |
Значение |
Коэффициент детерминации |
2.0E-5 |
Средний коэффициент эластичности |
-0.00266 |
Средняя ошибка аппроксимации |
3.95 |
2) При помощи теста ранговой корреляции Спирмена.
Коэффициент ранговой корреляции Спирмена.
Присвоим ранги признаку ei и фактору X.
X |
ei |
ранг X, dx |
ранг ei, dy |
15387 |
7.06 |
3 |
10 |
15325 |
1.56 |
1 |
6 |
15340 |
2.84 |
2 |
7 |
15813 |
4.54 |
4 |
9 |
16308 |
3.44 |
5 |
8 |
16727 |
0.65 |
6 |
3 |
17262 |
1.45 |
7 |
4 |
17950 |
1.54 |
8 |
5 |
18969 |
0.23 |
9 |
1 |
19490 |
0.38 |
10 |
2 |
Матрица рангов.
ранг X, dx |
ранг ei, dy |
(dx - dy)2 |
3 |
10 |
49 |
1 |
6 |
25 |
2 |
7 |
25 |
4 |
9 |
25 |
5 |
8 |
9 |
6 |
3 |
9 |
7 |
4 |
9 |
8 |
5 |
9 |
9 |
1 |
64 |
10 |
2 |
64 |
55 |
55 |
288 |
Проверка правильности составления матрицы на основе исчисления контрольной суммы:
Сумма по столбцам матрицы равны между собой и контрольной суммы, значит, матрица составлена правильно.
По формуле вычислим коэффициент ранговой корреляции Спирмена.
Связь между признаком ei и фактором X сильная и обратная
ВТОРОЙ ВЫВОД: Добыча нефти снижается в зависимости от времени.
