Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МАТЕМАТИЧЕСКИЙ АНАЛИЗ 2 - Глава 1.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.44 Mб
Скачать

Метод замены переменной.

Это – универсальный метод, метод подведения под дифференциал является частным случаем метода замены переменной.

Теорема. Пусть функция непрерывно дифференцируема в некоторой области и имеет непрерывно дифференцируемую обратную функцию . Тогда где .

Доказательство. Дифференцируя обе части, используя теоремы о производной сложной функции и инвариантность формы записи первого дифференциала, получим тождество дифференциалов.

, где . Из него следует равенство интегралов в левой и правой частях.

Заметим, что требования к обратной функции нужны, чтобы суметь возвратиться обратно, от переменной к переменной .

Метод интегрирования по частям.

Для вычисления интегралов вида , если вместо него удобно вычислять интеграл , пользуются методом интегрирования по частям.

= - ,

если интегралы в обеих частях соотношения существуют.

Докажем справедливость этой формулы. Дифференцируя произведение функций, получим или

.

Интегралы левой и правой частей существуют( ).

Интегрируя, получим нужное соотношение.

Примеры.

.

Вычислим интегралы , .

,

.

Теперь, подставляя второй интеграл в первый, получим

. Лекция 2

Аналогично, подставляя первый интеграл во второй, получим

.

Пополним таблицу интегралов, применяя методы интегрирования (в первой лекции получены четыре интеграла).

5.

6.

7.

8.

Здесь сделана замена переменной, подстановка - одна из подстановок Эйлера,

, , .

9.

( )

.

.

Перенося искомый интеграл из правой части в левую часть, получим

10.

11.

12.

13. - вывести самостоятельно.

Эти соотношения представляют собой таблицу основных интегралов.

Интегрирование выражений, содержащих квадратный трехчлен.

Квадратный трехчлен , выделяя полный квадрат, можно привести к виду

= ,

где , .

Знак «+» выбирается, если , знак «-» выбирается, если . Если .

  1. .

Если , то .

Если , то .

Если , то

  1. .

Если , , то под корнем стоит отрицательное число, интеграл в функциях действительной переменной вычислить не удастся.

Если , , то = .

Если , , то = .

Если , то .

Если , то = .

  1. =

.

Интеграл вычислен в п.1.

  1. =

.

Интеграл вычислен в п.2.

Заметим, что интегралы 5 –10 таблицы интегралов также содержат приведенный квадратный трехчлен.

Примеры.

.

3. Интегрирование рациональных функций.

Рациональная функция – это отношение двух целых функций – многочленов (полиномов).

Если порядок полинома – числителя ниже порядка полинома – знаменателя, то такая рациональная функция называется рациональной дробью.

Лемма 1. Если рациональная функция не является рациональной дробью, то ее можно привести к сумме целой части – полинома и рациональной дроби.

Доказательство основано на правиле деления многочленов с остатком, например, на алгоритме деления многочленов «уголком».

Пример. .

Отсюда следует, что .

Поэтому интегрирование рациональной функции сводится к интегрированию многочлена и интегрированию рациональной дроби.

Интеграл от многочлена равен по свойствам линейности интеграла сумме произведений интегралов от степенных функций на постоянные коэффициенты. Интеграл от степенной функции легко вычислить по таблице интегралов.