- •Введение.
- •Тема 1. Логические высказывания и предикаты.
- •1. Понятие высказывания. Логические операции над высказываниями.
- •Основные логические связки.
- •2. Формулы и их логические возможности.
- •3. Свойства логических операций (законы логики).
- •4. Понятие предиката. Операции над предикатами.
- •5. Кванторы.
- •Практическая работа по теме 1.
- •Задания для самостоятельной работы по теме 1.
- •Контрольные вопросы по теме 1.
- •Тема 2. Множества. Отношения. Отображения.
- •1.Основные понятия
- •2. Операции над множествами
- •3. Геометрическое моделирование множеств. Диаграммы Венна
- •4. Соотношение между множествами и составными высказываниями
- •5. Алгебра множеств. Основные тождества алгебры множеств
- •Основные тождества алгебры множеств
- •6. Эквивалентность множеств
- •Практическая работа по теме 2.
- •Задания для самостоятельной работы по теме 2.
- •Контрольные вопросы по теме 2.
- •Тема 3. Отношения. Функции.
- •1. Основные понятия и определения
- •2. Бинарные отношения и их свойства.
- •Свойства бинарных отношений.
- •3. Отношение эквивалентности.
- •4. Функции. Основные понятия и определения
- •Практическая работа по теме 3.
- •Задания для самостоятельной работы по теме 3.
- •Контрольные вопросы по теме 3
- •Тема 4. Булевы функции.
- •1. Определение булевой функции
- •2. Существенные и фиктивные переменные.
- •Критерий несущественности переменной.
- •3. Формулы логики булевых функций
- •4. Эквивалентность булевых формул.
- •5. Равносильные преобразования формул
- •Основные равносильности булевых формул.
- •6. Двойственность. Принцип двойственности.
- •7. Нормальные формы.
- •8. Полные системы булевых функций
- •9. Полином Жегалкина
- •10. Замкнутые классы функций.
- •11. Функциональная полнота.
- •Практическая работа по теме 4.
- •Задания для самостоятельной работы по теме 4.
- •Контрольные вопросы по теме 4.
- •Тема 5. Основные понятия теории графов.
- •1. Основные понятия теории графов.
- •Маршруты, циклы в неориентированном графе
- •Пути, контуры в ориентированном графе
- •2. Планарность и изоморфизм графов
- •3. Способы задания графов
- •Основные свойства матриц смежности и инцидентности
- •4. Связность графа
- •5. Алгоритм обхода вершин графа.
- •6. Нагруженные графы
- •Свойства минимальных путей в нагруженном ориентированном графе
- •7. Деревья
- •8. Основные типы практических задач.
- •1. «Задача коммивояжера» и «Задача о минимальной сети дорог»
- •2. Построение турнирной таблицы
- •3. «Задача о четырех красках»
- •Практическая работа по теме 5.
- •Задания для самостоятельной работы по теме 5.
- •Контрольные вопросы к теме 5.
- •Задания контрольной работы
- •Список источников литературы Основная литература
- •Дополнительная литература
Список источников литературы Основная литература
Гаврилов, Г.П. Задачи и упражнения по дискретной математике: учеб. пособие / Г.П. Гаврилов, А.А. Сапоженко. – 3-е изд., перераб. – М.: Физматлит, 2005.
Ерош, И.Л. Дискретная математика: учеб. пособие / И.Л. Ерош, М.Б. Сергеев, Н.В. Соловьев. – СПб.: СПбГУАП, 2005.
Ерусалимский, Я.М. Дискретная математика: теория, задачи, приложения / Я.М. Ерусалимский. – 3-е изд. – М.: Вуз. книга, 2000.
Дополнительная литература
Костенко, К.И. Элементы дискретной математики: учеб. пособие / К.И. Костенко; КубГУ. – Краснодар, 1997. – 73 с.
Мамий, К.С. Основы современной математики: учеб.-метод. пособие / К.С. Мамий. – Майкоп: Адыгея, 1994. – 144 с.
Хаггарти, Р. Дискретная математика для программистов / Р. Хаггарти. – М.: Техносфера, 2005.
Яблонский, С.В. Введение в дискретную математику: учеб. пособие для вузов / С.В. Яблонский. – 2-е изд., пераб. и доп. – М.: Наука, 1986.
1 Для краткости в дальнейшем латинскими буквы A, B, C, … будем обозначать как переменные, так и формулы. Трактовка этих символов будет определяться из контекста.
