
- •1 Литературный обзор
- •1.1 Общая характеристика сточных вод химической промышленности
- •1.2 Методы очистки сточных вод
- •1.2.1 Рекуперационные методы очистки сточных вод
- •1.2.1.1 Метод адсорбции
- •1.2.1.2 Метод ионообменной очистки
- •1.2.1.3 Метод экстракции
- •1.2.2 Деструктивные методы очистки сточных вод
- •1.2.2.1 Термические методы
- •1.2.2.1.1 Концентрирование сточных вод
- •1.2.2.1.2 Метод жидкофазного окисления
- •1.2.2.2 Каталитический метод очистки сточных вод
- •1.2.2.3 Биохимическая очистка сточных вод
- •1.3 Вакуум и вакуумные установки
- •1.4 Применение вакуума в науке и технике
- •1.5 Вакуумные технологии в химии и нефтехимии
- •1.6 Характеристика вакуум-насосов
- •2 Технологическая часть
- •2.1 Описание технологии производства
- •2.1.1 Описание работы пароэжекторной установки (пэу)
- •2.1.2 Описание работы проектируемой вакуумной установки
- •2.2 Влияние производства на загрязнение атмосферы
- •2.3 Влияние производства на загрязнение водных объектов
- •2.4 Отходы производства
- •2.5 Обоснование замены вакуумной установки на установке производства имтгфа
- •3 Расчетная часть
- •3.1 Расчет материальных потоков производства имтгфа
- •– Изопрен – 8 %.
- •3.2 Расчет конденсатора позиции 106а
- •3.3 Расчет вакуумного насоса
- •Приняли взамен прежнего пароструйного насоса безмасляный винтовой вакуумный насосы cobra nc 400 b
- •3.3 Выбор вспомогательного оборудования
- •4 Эколого-экономическая часть
- •4.1 Расчет величины предотвращенного экологического ущерба
- •4.2 Расчет экономической эффективности реконструкции
- •5 Безопасность жизнедеятельности
- •5.1 Характеристика проектируемого объекта
- •5.2 Производственная санитария
- •Тогда кратность воздухообмена будет равна
- •5.3 Мероприятия для обеспечения безопасности технологического процесса и оборудования
- •5.4 Электробезопасность
- •5.5 Пожарная безопасность
- •5.6 Мероприятия по предупреждению и ликвидации чрезвычайных ситуаций
1.3 Вакуум и вакуумные установки
Вакуум (от лат. vacuus – пустой) – пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащую газ при давлении значительно ниже атмосферного.
Вакуумной установкой называется установка, которая предназначена для получения вакуума. В состав вакуумной установки входит вакуум-насос, производственная емкость, коммуникации, арматура, вспомогательные приспособления и контрольно-измерительные приборы.
Вакуумные установки в зависимости от степени создаваемого разрежения можно разделить на два вида: установки для получения низкого и среднего вакуума и установки для получения высокого вакуума.
Вакуумные установки низкого и среднего вакуума могут быть как лабораторного, так и промышленного типа и предназначены для получения вакуума oт 760 мм рт. ст. до 10-3 мм рт. ст. Вакуумные установки высокого вакуума бывают в основном лабораторного типа и предназначены для получения вакуума порядка 10-4-10-8 мм рт. ст. Правда, эта грань постепенно стирается и некоторые вакуумные установки промышленного типа работают при давлениях порядка 10-6 мм рт. ст. [20].
1.4 Применение вакуума в науке и технике
Экспериментальные исследования испарения и конденсации, поверхностных явлений, некоторых тепловых процессов, низких температур, ядерных и термоядерных реакций осуществляются в вакуумных установках. Основной инструмент современной ядерной физики – ускоритель заряженных частиц – немыслим без вакуума. Вакуумные системы применяются в химии для изучения свойств чистых веществ, изучения состава и разделения компонентов смесей, скоростей химических реакций.
В металлургии плавка и переплав металлов в вакууме освобождает их от растворенных газов, благодаря чему они приобретают высокую механическую прочность, пластичность и вязкость. Плавкой в вакууме получают безуглеродистые сорта железа для электродвигателей, высокоэлектропроводную медь, магний, кальций, тантал, платину, титан, цирконий, бериллий, редкие металлы и их сплавы. В производстве высококачественных сталей широко применяется вакуумирование. Спекание в вакууме порошков тугоплавких металлов, таких, как вольфрам и молибден, является одним из основных технологических процессов порошковой металлургии. Сверхчистые вещества, полупроводники, диэлектрики изготавливаются в вакуумных кристаллизационных установках. Сплавы с любым соотношением компонентов могут быть получены методами вакуумной молекулярной эпитаксии. Искусственные кристаллы алмаза, рубина, сапфира получают в вакуумных установках. Диффузионная сварка в вакууме позволяет получать неразъемные герметичные соединения материалов с сильно различающимися температурами плавления. Таким способом соединяют керамику с металлом, сталь с алюминием и т. д. Высококачественное соединение материалов с однородными свойствами обеспечивает электронно-лучевая сварка в вакууме.
В машиностроении вакуум применяется при исследованиях процессов схватывания материалов и сухого трения, для нанесения упрочняющих покрытий на режущий инструмент и износостойких покрытий на детали машин, захвата и транспортирования деталей в автоматах и автоматических линиях.
Химическая промышленность применяет вакуумные сушильные аппараты при выпуске синтетических волокон, полиамидов, аминопластов, полиэтилена, органических растворителей. Вакуум-фильтры используются при производстве целлюлозы, бумаги, смазочных масел. В производстве красителей и удобрений применяются кристаллизационные вакуумные аппараты.
В электротехнической промышленности вакуумная пропитка как самый экономичный метод широко распространена в производстве трансформаторов, электродвигателей, конденсаторов и кабелей. Повышаются срок службы и надежность при работе в вакууме переключающих электрических аппаратов.
Оптическая промышленность при производстве оптических и бытовых зеркал перешла с химического серебрения на вакуумное алюминирование. Просветленная оптика, защитные слои и интерференционные фильтры получают напылением тонких слоев в вакууме.
В пищевой промышленности для длительного хранения и консервирования пищевых продуктов используют вакуумную сушку вымораживанием. Расфасовка скоропортящихся продуктов, осуществляемая в вакууме, удлиняет сроки хранения фруктов и овощей. Вакуумное выпаривание применяется при производстве сахара, опреснении морской воды, солеварении. В сельском хозяйстве широко распространены вакуумные доильные аппараты. В быту пылесос стал нашим незаменимым помощником.
На транспорте вакуум используется для подачи топлива в карбюраторах, в вакуумных усилителях тормозных систем автомобилей. Имитация космического пространства в условиях земной атмосферы необходима для испытания искусственных спутников и ракет.
В медицине вакуум применяется для сохранения гормонов, лечебных сывороток, витаминов, при получении антибиотиков, анатомических и бактериологических препаратов [21].