Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие Колебания и волны(готово)укр.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
4.35 Mб
Скачать

3.1 Вимушені коливання в лінійних системах при гармонійній обурюючий силі

Розглянемо лінійну систему з урахуванням опору під дією гармонійної обурючої сили. Диференціальне рівняння руху в узагальнених координатах має вигляд

(3.1)

де для механічних систем, наприклад, , а для електричного контуру:

Загальне рішення рівняння (3.1) має вигляд

,

де при відомо (див. 2.3), а – якесь приватне рішення рівняння (3.1). Будемо шукати його у вигляді

Стандартна процедура визначення постійних та дає

(3.2)

Таким чином, рішення рівняння (3.1) приймає вигляд:

(3.3)

де і визначаєюься за початковими умовами.

При рішення (3.3) описує рух коливальної системи за відсутності опору.

Розглянуті коливання є складними і складаються з власних (перший доданок в (3.3)) і вимушених коливань (другий доданок). Власні коливання після закінчення часу практично згасають і система буде робити коливання за законом

Ці коливання і називаються вимушеними. Величина характеризує зсув фази вимушених коливань по відношенню до фази вимушених коливань.

Для дослідження отриманих результатів введемо позначення:

де – величина статичного «відхилення» системи під дією «сили» . Тоді з рівності (3.2) отримаємо

(3.4)

Рисунок 3.4 – Залежності коефіцієнта динамічності від співвідношення частот

Величину називають коефіцієнтом динамічності системи. Залежність коефіцієнта динамічності від співвідношення частот показана на рис.3.4 для різних значень

З (3.4) видно, якщо амплітуди вимушених коливань досягають максимуму. Таке явище називається резонансом. Максимуми кривих лише незначно зміщуються вліво від значення ; резонансне значення коефіцієнта динамічності часто називають добротністю системи.

Відзначимо, що однією з основних властивостей вимушених коливань є наступне: навіть при малій обурюючий силі можна отримати інтенсивне вимушене коливання, і навіть при великих значеннях обурючої сили вимушені коливання можна зробити як завгодно малими.

Вимушені коливання і, зокрема, резонанс відіграють велику роль у багатьох галузях фізики і техніки: амортизуючі коливальні пристрої, що реєструють прилади, помножувачі частот і т.п.

3.2 Вимушені коливання нелінійного дисипативної осцилятора

Отримання замкнутих рішень задач про вимушені коливання при нелінійно-в'язкому терті або нелінійній відновлювальній силі навіть у разі моногармонічній обурюючий силі дуже важко. Навіть при застосуванні потужного методу пошука рішення у вигляді рядів Фур'є багато суттєві особливості поведінки нелінійних систем не виявляються досить виразно. Тому обмежимося деякими приватними випадками і окремими прийомами, що дозволяють з'ясувати найбільш характерні особливості даного явища.

3.2.1 Консервативна система з нелінійної відновлювальної силою

Розглянемо найпростішу нелінійну консервативну систему, описувану рівнянням

(3.5)

Приймемо, що система мало відрізняється від лінійної і тому вимушені коливання відбуватимуться з основною частотою

Будемо цікавитися тільки поведінкою амплітуди В. Якщо шукати вимушене рішення у вигляді то рівняння (3.5) прийме вигляд

. (3.6)

Рішення цього рівняння можна отримати графічним способом: визначення точок перетину прямої і графіка заданої функції (рис.3.5).

Рисунок 3.5 – Графічне визначення амплітуди вимушених коливань

Рисунок 3.6 – Характерна резонансна крива систем з нелінійною відновлювальною силою

Для різних та можна побудувати певний аналог резонансних кривих для лінійних систем. Зобразимо резонансну криву (рис.3.6) для деякої заданої амплітуди впливу і відзначимо особливості її поведінки. При отримаємо криву (скелетна крива - штрихова лінія), відповідну зв'язку власної частоти і амплітуди вільних коливань.

Аналіз характерною резонансної кривої дозволяє зробити наступні висновки:

1. При частоті в системі завжди відбувається однозначно визначений коливальний рух з амплітудою, яка залежить від частоти.

2. При можливі три режими руху:

, , .

Детальні дослідження показують, що два перших режиму стійкі, а третій режим нестійкий.

3. Відзначається неоднозначність протікання явища в залежності від напрямку зміни частоти збуджуючої. Поступове збільшення частоти від нуля призводить до збільшення амплітуди слідуючи гілки I. При деякому значенні система відчуває «зрив» амплітуди на гілку II (точки і ) і далі амплітуда зменшується слідуючи кривій II. Якщо ж після зриву амплітуди частоту зменшувати, то буде зростання амплітуди до точки , а її подальше зменшення призводить до зриву на гілку I (точка );

4. При наявності тертя обидві гілки кривої сходяться і при збільшенні частоти зрив амплітуд стає неминучим.