Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lekts_po_Ustr_SVCh_i_ant.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.23 Mб
Скачать

Основные элементы и узлы линий передачи. Мостовые соединения

1. Двойной Т-мост показан на рис. 18.45. Его основные свойства заключаются в следующем:

1) Если плечи А и Б (прямые плечи) нагружены на одинаковые сопротивления (не обязательно согласованные с волноводом), находящиеся на одинаковом расстоянии от моста, то при подаче электромагнитной энергии в плечо Г (Н-плечо) она разделяется поровну между нагрузками плеч А и Б и не проходит в плечо В. Энергия из плеча В при тех же условиях не проходит в плечо Г. Таким образом, плечи В и Г моста оказываются развязанными. Величина развязки (коэффициента передачи между плечами В и Г) выражается обычно в децибелах.

 

2) Электромагнитные волны, поступающие в основной волновод из плеча В, расходятся в плечи А и Б в противофазе. 

3) Электромагнитные волны, поступающие в основной волновод из плеча Г, расходятся в плечи А и Б в фазе.

4) Если к мосту из плеч А и Б приходят волны с комплексными амплитудами  и  , то волны в плече Г пропорциональны сумме комплексных амплитуд, а в плече В - их разности. Благодаря этому двойной Т-мост, как и другие мосты, применяют в качестве суммарно-разностных устройств.

5) При подключении к любым трем плечам согласованных нагрузок четвертое плечо также оказывается согласованным. 

Из-за наличия в месте разветвления реактивных полей высших типов волн даже при точном выполнении Т-моста между плечами В и Г имеется емкостная связь. Поэтому, если необходимо добиться большой развязки плеч В и Г, принимают специальные меры по устранению этой связи.

Рис. 18.45. Двойной Т-мост.

2. Волноводно-щелевой мост (рис. 18.46,а) представляет собой два прямоугольных волновода, соединенных по узкой стенке, часть которой на участке l удалена, образуя щель. Основное свойство моста заключается в том, что мощность электромагнитных волн, поступивших в плечо 1, делится поровну между плечами 3 и 4, не ответвляясь в плечо 2; волны на выходе плеч 3 и 4 сдвинуты по фазе на p/2. Принцип его работа состоит в следующем (рис. 18.46,б).

Рис. 18.46. Волноводно-щелевой мост.

Ширина волноводов а выбрана такой, что во всех четырех плечах может распространяться только волна типа Н10. Пространство в области щели образует волновод в котором могут распространяться волны типов Н'10 и И'20 (см. сечение III на рис. 18.46,б)* . При переходе электромагнитной энергии из плеча 1 в расширенный волновод в сечении II возникают волны Н'10, Н20, Н30 и более высоких типов. Первые две волны распространяются вправо по расширенному волноводу, а остальные быстро затухают при удалении от сечения II, образуя вблизи этого сечения реактивные поля.

В поперечном сечении II (рис. 18.46,б), где изображены эпюры амплитуд поперечных составляющих векторов электрического поля, граничные условия выполняются сложением электрических полей волн типов Н'10 и Н30 (волны более высоких типов в первом приближении можно не учитывать). При таком сложении в сечения II плеч 1 и 2 существуют синфазные волны типа Н10, которые обозначим Н1010, а амплитуду напряженности их электрического поля - Е10. Волна типа Н20 обусловливает существование в том же сечении двух противофазных волн типа Н10, которые будем обозначать Н1020, а амплитуду напряженности их электрического поля - Е20. У обозначения волн два нижних индекса указывают на тип возбужденной волны, а два верхних - какой волной возбуждена данная волна в плече.

Рассмотрим теперь сложение полей на векторной диаграмме в комплексной плоскости (см. чертеж слева на рис. 18.46,б). В сечении II входного плеча 1 волны типов Н1010 и Н1020 имеют одинаковую фазу. Их сумма есть поле падающей волны типа Н10 в этом сечении. В сечении II плеча 2 поля волн типов Н1010 и Н1020 оказываются в противофазе и, имея одинаковую амплитуду, полностью компенсируются. Таким образом, из плеча 1 в плечо 2 электромагнитная энергия не проходит и эти плечи оказываются развязанными.

Распространяясь вправо по расширенному волноводу, волны Н'10 и Н20 достигают сечения IV, где волновод вновь делится на два плеча - 3 и 4. Средняя металлическая стенка не влияет на распространение волны типа Н20; электромагнитная энергия этой волны возбуждает в плечах противофазные волны типа Н1020 одинаковой напряженноти Е20. Колебания волны типа Н'10 в сечении IV существовать не могут. Граничные условия в этом сечении требуют появления волны высших типов. Появляется волна типа Н30 и волны более высоких типов. За счет сложения полей волн Н'10 и Н30 в плечах 3 и 4 возбуждаются синфазные волны Н1010 одинаковой напряженности Е10. Сложение волн в плечах 3 и 4 иллюстрируется векторной диаграммой в сечении IV на рис. 18.46,б. На этой диаграмме Dy- разность фаз колебаний за счет разных скоростей распространения волн Н20 и Н'10 в расширенном волноводе (у волны Н'10 скорость распространения меньше). Здесь расширенный волновод выступает как секция дифференциального фазового сдвига для волн различных типов.

Из векторной диаграммы видно, что если Е1020 (мост настраивается так, чтобы это равенство выполнялось), то в плечах 3 и 4 колебания всегда будут сдвинуты по фазе точно на p/2, независимо от разности фаз Dy, причем поле в прямом плече 3 опережает по фазе поле в боковом плече 4. Из этой же диаграммы нетрудно получить выражение для отношения амплитуд в плечах 3 и 4

p = Е3 / Е4 = ctg(Dy/2).(18.14)

Разность фаз полей волн типов Н'10 и Н20, полученная в результате прохождения ими расстояния, равного длине щели, равна

Dy = 2pl(1/L'10- 1/L20),(18.15)

где - длины волн в расширенном волноводе. При работе рассматриваемого устройства в качестве моста требуется, чтобы амплитуды полей в согласованных плечах 3 и 4 при питании через плечо 1 были одинаковыми. Как видно из выражения (18.14), это будет обеспечено при Dy=p/2. Необходимую для этого длину щели получим из формулы (18.15)

.(18.16)

Развязка между плечами 1 я 2 (отношение мощности в плече 1 к мощности, просочившейся в плечо 2) достигает 30-35 дБ. Для получения высокой развязки, хорошего согласования и выравнивания мощностей в выходных плечах применяется небольшое сужение расширенного волновода и подстройка с помощью емкостного штыря 5 в середине щели. Этим добиваются выравнивания амплитуд Е10 и Е20 и нужного фазового сдвига синфазного и противофазного полей.

Данное устройство может служить регулируемым или фиксированным делителем мощности в любом отношении. Для этого достаточно любым способом изменить Dy. Если Dy®2np, где n=0, 1, 2, ..., то большая мощность проходит в плечо 3, а если Dy®(2n+1)p-в плечо 4. Если разница мощностей в плечах 3 и 4 составляет 10 дБ и более, то это устройство является направленным ответвителем (см. § 18.9). 

3. Кольцевой мост может быть построен с использованием линий передачи любого типа. На рис. 18.47 изображен мост с параллельным подключением плеч к кольцу (применяются также мосты с последовательным подключением плеч и комбинированным: часть последовательно, а часть параллельно). Мост состоит из кольцевой линии длиной 1,5L0 с волновым сопротивлением Wк и четырех плеч с волновыми сопротивлениями W, расположенных по кольцу на расстоянии L0/4 друг от друга. Здесь L- длина волны в кольцевой линии на средней частоте диапазона.

Для пояснения принципа действия моста предположим, что генератор подключен к плечу 2 и что входные сопротивления плеч 1 и 3 одинаковы ( ).

Электромагнитные волны от плеча 2 расходятся в обе стороны, имея одинаковые амплитуды и фазы. Разность хода противоположно распространяющихся волн до плеч 1 и 3 одинакова и равна длине волны. Поэтому на входах этих плеч бегущие в обе стороны волны складываются в фазе, образуя пучность напряжения. Разность хода вола от плеча 2 до плеча 4 равна L0/2. Поэтому на входе плеча 4 образуется узел напряжения и электромагнитные колебания не проходят в плечо 4. Таким образом, плечи 2 и 4 оказываются развязанными.

Рис. 18.47. Кольцевой мост.

Плечи 1 и 3 находятся в одинаковых условиях относительно плеча 2, поэтому поступающая из него мощность делится поровну между плечами 1 и 3.

Входные сопротивления плеч 1 и 3 четвертьволновыми отрезками линии с волновым сопротивлением Wк трансформируются к сечению 2 и, складываясь параллельно, образуют сопротивление нагрузки для генератора, равное

.(18.17)

Если оба плеча нагружены на сопротивления, равные волновому сопротивлению плеч W, то . Для согласования генератора с мостом необходимо выполнить условие  . Из приведенной выше формулы следует, что полное согласование достигается при условии

.(18.18)

При выполнении этого соотношения на средней частоте диапазона развязка между плечами 2 и 4 очень велика (до 60 дБ в практических конструкциях), Кбв в питающем плече 2 близок к единице и мощность от генератора поровну делится между плечами 1 и 3.

Пользуясь приведенным выше методом, можно показать, что:

- при подключении генератора к плечу 4 мощность делится поровну между плечами 1 и 3 и не проходит в плечо 2;

- при подключении генератора к плечу 3 мощность делится поровну между плечами 2 и 4 и не проходит в плечо 1;

- при подключении генератора к плечу 1 мощность делится поровну между плачами 2 я 4 и не проходит в плечо 3;

- волны из плеч 1 и 3 суммируются в плече 2 и вычитаются в плече 4, соответственно волны из плеч 2 и 4 суммируются в плече 3 и вычитаются в плече 1.

Основные элементы и узлы линий передачи. Развязывающие устройства

1. Типичными развязывающими устройствами являются:

- поглотительные, предельные и вентильные аттенюаторы;

- направленные ответвители;

- циркуляторы.

Перечисленные устройства могут быть выполнены в коаксиальном, полосковомволноводном вариантах.

Рассмотренные в § 18.8 мосты могут также использоваться и в качестве развязывающих устройств.

Специфическими электрическими характеристиками развязывающих устройств являются: переходное затухание (ослабление) Lз и направленность Lн. Эти величины есть соответствующие коэффициенты передачи по мощности (см. § 18.1, п. 3). Обозначим номером 1 плечо, из которого электромагнитные колебания поступают в узел, 2 и 3 - плечи, в которые передаются электромагнитные колебания с требуемым ослаблением, и 4 - плечо, в которое колебания не должны поступать, т.е. плечо, развязываемое от входного плеча 1.

 

Для двуплечих взаимных узлов определяется только ослабление; оно равно Lз=-10lg(P12/P1). В четырехплечих узлах величины Lз12=-10lg(Р12/P1) и Lз13=-10lg(Р13/P1) являются ослаблением для соответствующих направлений передачи, а величины Lн24=-10lg(Р14/P12) и Lн34=-10lg(Р1413) определяют направленность передачи в каналы 2 и 3 соответственно по отношению к каналу 4.

2. Аттенюаторы являются двуплечими устройствами, предназначенными для заданного фиксированного или регулируемого ослабления интенсивности электромагнитных колебаний.

3. Аттенюаторы поглотительного типа работают по принципу поглощения и рассеяния на тепло части мощности проходящей электромагнитной волны.

Рис. 18.48. Аттенюаторы.

На рис. 18.48,а изображен вариант выполнения волноводного регулируемого аттенюатора. В прямоугольном волноводе 1 с волной типа Н10 в середине широкой стенка прорезана узкая продольная щель 2, через которую в волновод вдвигается поглощающая пластинка 3. Она представляет собой диэлектрическую пластинку, покрытую слоем сажи, графита или другого материала, интенсивно поглощающего электромагнитные волны. Степень поглощения, т.е. величина ослабления, зависит от площади пластинки, находящейся внутри волновода.

На этом же принципе могут быть построены и фиксированные аттенюаторы.

Отражения в аттенюаторах поглотительного типа малы, а ослабление слабо зависит от частоты.

4. Аттенюаторы предельного типа основаны на использовании линий передачи, поперечные размеры которых меньше критических для распространяющегося типа волны.

На рис. 18.48,б показан предельный коаксиальный аттенюатор. Он образован коаксиальной линией 1, центральный провод 2 которой имеет разрыв на участке 3 длиной l. Этот участок коаксиальной линии является круглым волноводом, в котором с помощью диска 4 возбуждается волноводная волна типа Е01. Диаметр D волновода выбирается так, чтобы критическая длина волны lкр01=1,305D была меньше рабочей длины волны. Волновод 3 и диски 4 составляют собственно предельный аттенюатор. Его ослабление быстро возрастает при уменьшении относительного диаметра D/l. Длина предельного аттенюатора получается небольшой. Так, для получения ослабления Lз=30 дБ (уменьшение передаваемой мощности в 1000 раз) на волне l=10 см при D=1,5 см необходимая длина аттенюатора составляет всего 1 см.

Ослабление предельных аттенюаторов сильно зависит от частоты. На эквивалентной схеме аттенюатор представляется емкостью С (рис. 18.48,б), величина которой тем меньше, чем больше Lз. На входе аттенюатора происходит сильное отражение электромагнитных волн, тем большее, чем больше Lз. Поэтому такие аттенюаторы являются узкополосными.

5. Аттенюаторы с использованием невзаимных свойств ферритов отличаются тем, что их ослабление зависит от направления распространения, т.е. для этих устройств Lз12>Lз21.

Это свойство определяет вентильное действие невзаимных устройств с двумя входами. Вентильные свойства характеризуются направленностью Lн. Величина направленности (в децибелах) может быть рассчитана через известные переходные затухания до формуле 

Lн = Lз21-Lз12.

На рис. 18.48,в показано поперечное сечение вентиля, основанного на эффекте смещения поля в прямоугольном волноводе. Вентиль содержит поперечно-намагниченную ферритовую пластинку 1, на которую нанесен поглощающий слой 2. Эскиз этой пластинки показан на рис. 18.48,г.

Если на рис. 18.48,в направление хода волны соответствует направлению от читателя за чертеж, то, обращаясь к рис. 18.5,а можно видеть, что поглощающая пластинка находится вне области интенсивного электрического поля. Поглощение при этом будет небольшим. При распространении волн в обратном направлении поглотитель будет находиться в максимуме распределения электрического поля, что вызовет интенсивное поглощение.

Рис. 18.49. Принципиальная схема направленного ответвителя.

6. Направленные ответвители предназначены для направленной передачи электромагнитной энергии из одной линии передачи в другую, причем так, что направление передачи энергия во второй линии зависит от направления передачи в первой линии. Бели из одной линии в другую передается заметная часть мощности, то направленные ответвители можно отнести к классу делителей мощности, а если небольшая часть, то - к классу развязывающих устройств.

Направленные ответвители могут быть как взаимными, так и невзаимными.

На рис. 18.49 показана принципиальная схема включения, направленного ответвителя, соединяющего линии 1-2 и 3-4. Если электромагнитная энергия передается из плеча 1 в плечо 2, то часть ее ответвляется в плечо 4, а в плечо 3 энергия не поступает. Если передача идет из плеча 2 в плечо 1, то часть ее ответвляется в плечо 3, а в плечо 4 энергия не поступает.

Пусть основная передача идет в направлении от плеча 1 к плечу 2. Тогда величина Lз12 называется ослаблением в прямом направлении, величина Lз14- ослаблением в направлении ответвления, а величина Lн=-10lg(P1314)- направленностью направленного ответвителя.

7. Основные типы направленных ответвителей:

- коаксиальные и волноводные с одиночными элементами связи, обладающими собственной направленностью (отверстия и петли связи);

- коаксиальные и полосковые двух- и многошлейфовые;

- полосковые с использованием полей рассеяния;

- волноводные многодырочные и многостержневые;

- волноводные со щелевой связью.

В конструкциях и принципах действия направленных ответвителей и мостов много общего. Например, направленный ответвитель, у которого ослабление равно 3 дБ (мощность плеча 1 поровну делится между плечами 2 и 4), является мостом. Этот режим, однако, не характерен для направленных ответвителей. Создано большое количество различных по принципу действия и характеристикам направленных ответвителей [1, 3-5]. Рассмотрим один из наиболее широко распространенных.

8. Волноводный многодырочный направленный ответвитель (рис. 18.50) состоит из основного волновода с плечами 1 и 2 и вспомогательного волновода с плечами 3 и 4. Волноводы на некотором участке соединяются по широкой или узкой стенке. В общей стенке прорезаются отверстия 5, от числа, диаметра и расположения которых зависят ослабление и направленность.

Для вспомогательного волновода отверстия связи являются излучателями, образующими линейную решетку. Если основной волновод в области отверстий имеет постоянную ширину, а отверстия расположены на одинаковом расстоянии друг от друга то эта решетка будет линейно-фазной. Разность фаз возбуждения отверстий y=2pd/L. Электромагнитные волны во вспомогательном волноводе, возбужденные отверстиями распространяются влево и вправо по волноводу. При этом разность фаз за счет разности хода полей от соседних излучателей при равной ширине волноводов равна 2pd/L. Таким образом, разность фаз возбуждения излучателей равна разности фаз за счет разности хода электромагнитных волн между ними. Как показано в гл. 3, такая решетка является решеткой продольного излучения с максимумом излучения, ориентированным в сторону отстающих по фазе излучателей. При указанном на рис. 18.50 направлении распространения ответвление мощности будет происходить в основном в плечо 4 и в меньшей степени в плечо 3. Чем больше число отверстий, тем больше направленность. 

 

Рис. 18.50. Многодырочный волноводный направленный ответвитель.

Рис. 18.51. Принципиальная схема четырехплечевого циркулятора.

Расстояние d может быть любым, однако наилучшие результаты по согласованию и направленности получаются при d=L0/4 где L0- длина волны в волноводе на средней частоте рабочего диапазона.

Если ответвление мощности необходимо только при передаче в направлении 1-2, то в плечо 3 ставится нагрузка, которая поглощает ответвленную мощность при передаче в обратном направлении.

Основные элементы и узлы линий передачи. Развязывающие устройства

9. Циркуляторы - это развязывающие многоканальные устройства, в которых электромагнитные волны распространяются из одного канала в другой только в определенной последовательности.

Принципиальная схема четырехплечего циркулятора показана на рис. 18.51. Стрелками на рисунке показаны направления передачи. Если электромагнитная энергия поается в плечо 1, то она пройдет в плечо 2 и не пройдет в другие плечи. При подключении генератора к плечу 2 электромагнитная энергия пройдет только в плечо 3 и т. д. В рассматриваемом примере циркуляция происходит в последовательности

1 ® 2 ® 3 ® 4 ® 1.(18.19)

Могут быть, конечно, и другие последовательности.

 

10. Фазовый циркулятор с двумя волноводно-щелевыми мостами состоит (рис. 18.52) из двух последовательно расположенных волноводно-щелевых мостов I и II, диэлектрической пластинки Д и ферритовых пластин Ф с поперечным намагничивающим полем, создающих дифференциальный фазовый сдвиг. Свойства волноводно-щелевого моста описаны в § 18.8 п. 2, а секции дифференциального фазового сдвига - в § 18.8, п. 7.

Рассмотрим работу циркулятора, изображенного на рис. 18.52,а. Параметры ферритовых пластин и постоянное поперечное подмагничивающее поле подобраны так, что в верхнем волноводе при передаче слева направо создается сдвиг по фазе -p/2 (отставание по фазе), а при передаче справа налево создается сдвиг по фазе, который считается равным нулю. В нижнем волноводе ферритовая пластинка обеспечивает фазовый сдвиг -p/2 при передаче справа налево и нуль - при обратном направлении передачи. Указанные фазовые сдвиги в двух ферритовых пластинках, расположенных по обеим сторонам разделительной стенки, получаются при намагничивании обеих пластинок поперечным полем одного направления. Это удобно, так как требуется один магнит.

В верхнем волноводе установлена диэлектрическая пластинка Д, которая создает обратимый фазовый сдвиг -p/2 по отношению к волне в волноводе без этой пластинки.

Рассмотрим теперь фазовые соотношения в циркуляторе. При этом будем учитывать только разностные фазовые сдвиги.

Пусть генератор подключен к плечу 1, а к остальным плечам подключены согласованные нагрузки. Волны из плеча 1 попадают в волноводно-щелевой мост I и разделяются им на два потока равной амплитуды, которые идут в направлении плеч 2 и 4. После моста I колебания в верхнем волноводе отстают по фазе на p/2 от колебаний в нижнем волноводе, фазу которых примем за нулевую. После прохождения участков волноводов с ферритовыми и диэлектрической пластинками колебания на входе моста II в верхнем волноводе получат запаздывание по фазе на Зp/2, а в нижнем волноводе - запаздывание, которое принимается равным нулю. Мостом II каждая половина мощности делится еще пополам. Электромагнитные волны, проходя из нижнего волновода в верхний и из верхнего в нижний, получают запаздывание по фазе p/2. Если теперь просуммировать все относительные фазовые сдвиги, то окажется, что колебания, пришедшие по двум путям в плечо 4, отличаются до фазе на p, а пришедшие в плечо 2, имеют одинаковую фазу. Так как амплитуды волн, пришедших разными путями, одинаковы, то в плече 4 волны полностью взаимно компенсируются, а в плече 2 складываются, образуя волну такой же интенсивности, как в плече 1. Таким образом, электромагнитная анергия из плеча 1 проходит только в плечо 2.

Рис. 18.52. Фазовый ферритовый циркуляр на волноводно-щелевых мостах

Рис. 18.53. Фазовый ферритовый циркулятор с волноводно-щелевым и двойным Т-мостом.

Аналогичным образом можно показать, что из плеча 2 колебания попадут в плечо 3, из плеча 4 - в плечо 1. Следовательно, в рассмотренном циркуляторе реализуется последовательность (18.19).

Если направление подмагничивающего поля поменять на обратное, то ферритовые пластины будут создавать фазовые сдвиги, указанные на рис. 18.52,б. Нетрудно убедиться, что в таком циркуляторе реализуется последовательность соединения каналов

1 ® 4 ® 3 ® 2 ® 1.(18.20)

11. Фазовый циркулятор с двойным Т-мостом (рис. 18.53) состоит из последовательно расположенных двойного Т-моста (см. § 18.8, п. 1), прямые плечи которого согнуты под углом 90° и соединены по узкой стенке, фазовращателя с ферритовыми пластинками и волноводно-щелевого моста.

Плечо 1 циркулятора является Н-плечом Т-моста, а плечо 3 - Е-плечом Т-моста. При поступлении волн в плечо 1 они поровну и в одинаковой фазе придут к сечениям I и II и не попадут в плечо 3. При поступлении волн в плечо 3 они не попадут в плечо 1, но в равных долях и в противофазе придут к сечениям I и II. Постоянное магнитное поле и параметры ферритовых пластинок подбираются так, что образуются указанные на рисунке дифференциальные фазовые сдвиги.

Рис. 18.54. Поляризационный ферритовый циркулятор.

Пути прохождения электромагнитных волн после Т-моста показаны стрелками, там же указан дополнительный фазовый сдвиг на -p/2 при прохождении щелевого моста. Если сложить все фазовые сдвиги и учесть фазовые свойства Т-моста, то окажется, что из плеча 1 волны проходят только в плечо 2 (для этого случая на рисунке показаны суммарные фазовые сдвиги), из плеча 2 - в плечо 3 и т.д. Таким образом, в данном случае реализуется последовательность (18.19). При изменении направления магнитного поля дифференциальные фазовые сдвиги в фазовращателе изменятся. Это изменение переведет последовательность (18.19) в последовательность (18.20).

На основе циркуляторов с ферритами могут быть построены различные волноводные схемы, свойствами которых можно управлять, изменяя подмагничивающее поле.

12. Поляризационный циркулятор (рис. 18.54,а) основан на использовании эффекта Фарадея в продольно-намагниченном феррите. Соленоид, создающий постоянное магнитное поле Н0, на рисунке не показан. Рассматриваемый циркулятор - четырехплечий, невзаимный. Плечи 1 и 2 - это прямоугольные волноводы, которые плавными переходами соединяются с круглым волноводом в торец. Плечами 3 и 4 являются прямоугольные волноводы, которые образуют с круглым волноводом Т-образное параллельное соединение. Эти плечи называются боковыми.

Размеры круглого волновода выбираются так, что в нем может распространяться только волна типа Н11, а в прямоугольных - только волна типа Н10.

Если поляризация поля волны типа Н11 такая, как показано на рис. 18.54,б, то говорят, что боковой волновод 3 находится в положении пропускания, а торцевой волновод 1 - в положении запирания по отношению к волне Н11. При поляризации поля волны типа Н11, изображенной на рис. 18.54,в, в положении пропускания находится торцевой волновод 1, а в положении запирания - боковой волновод 3. В положении запирания круглый и прямоугольный волноводы развязаны, а в положении пропускания электромагнитная энергия полностью переходит из прямоугольного волновода в круглый, и наоборот. Положения затирания и пропускания для волноводов 2 и 4 определяются так же, как и для волноводов 1 и 3.

Плоскости широких стенок волноводов 1 и 2 повернуты вокруг оси круглого волновода на 45° относительно друг друга. Волноводы 3 и 4 также развернуты на угол 45° (рис. 18.54,г).

По оси круглого волновода установлен ферритовый стержень. Подмагничивающее поле направлено продольно по отношению к стержню (вдоль оси волновода). При указанном на рис. 18.54,а направлении Н0 плоскость поляризации волны типа Н11 поворачивается против часовой стрелки при передаче от плеча 1 к плечу 2 и по часовой стрелке при передаче от плеча 2 к плечу 1. Параметры ферритового стержня и величина подмагничивающего поля выбираются так, что на длине стержня плоскость поляризации волны типа Н11 поворачивается на угол 45°.

Рассмотрим передачу электромагнитной энергии через циркулятор при подключении генератора к плечу 1 и согласованных нагрузок к остальным плечам. Плечо 3 будет при этом в положении запирания. Пройдя феррит, волна типа Н11 повернется против часовой стрелки на 45° и будет иметь поляризацию, при которой плечо 4 находится в положении запирания, а плечо 2 - пропускания. При этом волны проходят в плечо 2 и не проходят в плечо 4. Таким образом, из плеча 1 электромагнитная энергия проходит только в плечо 2.

Подключим генератор к плечу 2. Плечо 4 при этом заперто. Пройдя феррит, волна Н11 поворачивается на 45° по часовой стрелке и оказывается по отношению к плечу 5 в положении пропускания, а к плечу 1 - запирания. Согласование круглого волновода с плечом 3 осуществляется подбором расстояния между волноводом 3 и эффективной плоскостью отражения от плеча 1 в положении его запирания. Таким образом, электромагнитная энергия из плеча 2 переходит только в плечо 3.

Рис. 18.55. Ферритовый Y-циркулятор.

Рис. 18.56. Примеры использования циркуляторов.

Рассуждая аналогичным образом, можно показать, что из плеча 3 электромагнитная энергия передается только в плечо 4, а. из плеча 4 - в плечо 1.

Итак, если вектор постоянного магнитного поля направлен к плечу 1, то циркулятор реализует последовательность (18.19). При изменении направления подмагничивающего поля на обратное циркулятор реализует последовательность (18.20).

13. Ферритовый Y-циркулятор (рис. 18.55) представляет собой три прямоугольных волновода, 1, 2, 3, в которых распространяется волна типа H11, соединенных между собой под углом 120° в Н-плоскости. В центре сочленения волноводов размещается ферритовый стержень или диск 5, намагниченный вдоль оси перпендикулярно широким стенкам волноводов. Высота стержня равна высоте волноводов или меньше ее. Стержень обычно помещается в диэлектрический цилиндр 4, который заметно улучшает работу циркулятора и упрощает его настройку, расширяя полосу пропускания.

Если в тройнике нет феррита, то волна, поступающая в плечо 1, делится поровну между плечами 2 и 3. При наличии намагниченного феррита волны, проходящие в плечи 2 и 3, будут суперпозицией двух полей: первичного, обозначенного E2 и Е3, и вторичного, переизлученного ферритовым стержнем (E'2, Е'3). Первичные поля в плечах 2 и 3 в силу симметрии будут синфазны и равны по амплитуде. Амплитуды и фазы вторичных полей в плечах 2 и 3 зависят от размеров и электрических параметров ферритового стержня и диэлектрического цилиндра. Параметры феррита можно регулировать подмагничивающим полем. Регулировками можно добиться, чтобы поля Е2 и Е'2 в плече 2 были синфазны, а Е3 и E'3 в плече 3 противофазны, а их амплитуды одинаковы. При этих условиях электромагнитная энергия из плеча 1 полностью переходит в плечо 2. Так как система симметричная, то колебания из плеча 2 будут передаваться только в плечо 3, а из плеча 3 - в плечо 1, т.е. будет реализована последовательность передачи 1-2-3-1. При изменении направления внешнего магнитного поля последовательность передачи также изменится на обратную: 1-3-2-1.

Y-циркуляторы могут быть выполнены также на коаксиальных на полосковых линиях.

Рассмотрим несколько применений циркуляторов в фидерных трактах.

14. Быстродействующий коммутатор на два направления (рис. 18.56,а). Из четырех плеч циркулятора в нем задействовано три. К плечу 1 подключают источник электромагнитных волн Г, а к плечам 2 и 4 - нагрузки H1 и Н2 (скажем, две антенны). При одном направлении подмагничивающего поля электромагнитная энергия в соответствии с последовательностью (18.19) проходит в нагрузку H1. Поменяв направление тока в соленоиде, создающем подмагничивающее поле, перейдем к последовательности (18.20). При этом электромагнитная энергия пойдет в нагрузку Н2. Так как в фазовых циркуляторах подмагничивающее поле имеет небольшую величину, то частота переключении может достигать 10 МГц.

15. Антенный переключатель радиолокационных станций схематически изображен на рис. 18.56,б. В нем применен циркулятор фазового типа с постоянным магнитом. Направление магнитного поля подобрано так, что реализуется последовательность (18.19).

В режиме передачи электромагнитные волны поступают из плеча 1 в антенну А, подключенную к плечу 2. В режиме приема сигналов, отраженных от цели, эетромагнитные колебания поступают в приемник Пр, подключенный к плечу 3, и не поступают к передатчику. К плечу 4 подключается поглощающая нагрузка П, в которой поглощаются колебания, неизбежно просачивающиеся в это плечо из-за неполной развязки между плечами циркулятора. Из-за неполной развязки часть мощности от генератора поступает и на вход приемника. Для защиты его входных цепей от повреждения на входе приемника ставится защитное устройство в виде разрядника или управляемого вентиля.

16. Вентильное устройство (рис. 18.56,в) служит для развязки генератора и нагрузки. При реализации в циркуляторе последовательности (18.19) электромагнитные волны поступают от генератора в нагрузку Н. Если нагрузка не согласована, то появляются отраженные волны, которые поступают через плечо 2 в плечо 3, где поглощаются в поглотителе П3. Поглотитель П4 устраняет отражение волн, просочившихся в плечо 4. Таким образом, отраженные волны не поступают на выход генератора и условия его работы не зависят от степени согласования нагрузки с линией передачи, подключаемой к плечу 2.

Аттенюаторы и нагрузки. Классификация и назначение

Аттенюатором называется устройство, предназначенное для ослабления мощности, поступающей от источника колебаний. Основной характеристикой аттенюатора является величина вносимого им ослабления мощности

дб.(5.1)

где С - ослабление в децибелах;

Рвх — мощность на входе аттенюатора;

Рвых — мощность на выходе аттенюатора. Аттенюаторы подразделяются на следующие типы. 

 

1. Предельные, основанные на принципе затухания электромагнитного поля в волноводах, размеры которых меньше критических. Если для данной частоты f или длины волны l волновод находится в за критическом режиме, то есть l >lкр (где lкр — критическая длина волны), то поле в таком закритическом волноводе будет экспоненциально убывать. Это затухание поля связано не с поглощением, а отражением энергии. Показатель экспоненциального закона возрастает с уменьшением поперечных размеров при постоянной длине волны.

Величина затухания предельного аттенюатора равна:

дб,(5.2)

здесь х — расстояние между элементами связи.

Обычно аттенюаторы рассчитываются на определенный тип волны Е и Н, возбуждаемых в круглом волноводе. При этом получается наиболее простая конструкция. Волноводные предельные аттенюаторы применяются редко, поэтому в дальнейшем они рассматриваться не будут.

Схематично конструкции коаксиальных предельных аттенюаторов показаны на рис. 5.1. Аттенюаторы для волн типа Е01 имеют емкостную связь (рис. 5.1, а, б), а аттенюаторы с индуктивной связью (рис. 5.1, в) возбуждают в круглом волноводе волны типа Н11.

а)

Рис. 5.1. Предельные аттенюаторы: а—прямой емкостного типа; б—уголковый емкостного типа; в—прямой индуктивного типа.

Для круглого волновода диаметром 2г критическая длина волны типа Е01 равна:

,(5.3)

а для волны Н11 равна:

,(5.4)

Если r<<l, то затухание аттенюатора для волны типа E01 может быть определено по формуле

дб,(5.5)

и для волны H11

дб,(5.6)

Отсюда видно, что затухание пропорционально расстоянию между элементами связи. Однако эта пропорциональность существует только при больших значениях х, о чем более подробно будет сказано в § 5.2.

2. Поглощающие аттенюаторы, основанные на принципе поглощения электромагнитной энергии поглощающими материалами.

3. Аттенюаторы, основанные на принципе деления мощности. В качестве таких аттенюаторов используются направленные ответвители, основные типы которых рассмотрены ранее.

При выборе типа аттенюатора следует руководствоваться следующими основными параметрами: рабочим диапазоном частот fмин - fмакс (lмакс—lмин), вносимым ослаблением — С, дб начальным ослаблением — Смин, дб (для переменных аттенюаторов), максимальной рассеиваемой мощностью — Рмакс, коэффициентом бегущей волны (Кбв), полной погрешностью DС.

Обычно в качестве измерительных и развязывающих аттенюаторов используются аттенюаторы поглощающего типа, а при точных измерениях и в качестве эталонов — предельные аттенюаторы. Достижимая точность измерения предельных аттенюаторов 0,05 дб, поглощающих — 0,1 дб. 

Начальное ослабление предельных аттенюаторов не может быть получено менее 10 дб. У поглощающих аттенюаторов при определенной конструкции начальное ослабление может быть получено практически равным нулю. Максимальное ослабление предельных аттенюаторов порядка 100—140 дб, поглощающих — до 40-60 дб. Конструктивно аттенюаторы выполняются в виде переменных и фиксированных волноводных, коаксиальных и полосковых.

Согласованные нагрузки широко используются в измерительной технике в качестве эквивалентов устройств СВЧ. Нагрузки часто являются составляющей частью направленных ответвителей и служат для поглощения обратной волны во вспомогательной линии.

Основными являются следующие параметры нагрузок. 

Рабочий диапазон частот. Волноводные нагрузки обычно работают во всем рабочем диапазоне частот применяемого волновода.

Величина Кбв в рабочем диапазоне частот. У хороших нагрузок Кбв порядка 0, 95—0, 97.

Величина рассеиваемой мощности. Если нагрузка рассчитывается на рассеяние средних и больших мощностей, то в этом случае качество согласования не имеет решающего значения и допустимой является величина Кбв порядка 0,91.

Конструктивно нагрузки выполняются в виде отрезка короткозамкнутой линии, внутри которого помещается поглощающий элемент. В качестве нагрузок могут использоваться согласованные аттенюаторы, затухание которых не менее 25 дб.

Ниже будут рассмотрены нагрузки, рассчитанные на малые и средние мощности.

Аттенюаторы и нагрузки. Волноводные аттенюаторы и нагрузки

Наибольшее распространение получили поверхностные Поглощающие Волноводные аттенюаторы, которые представляют собой отрезок волновода с помещенной в него пластиной, выполненной из поглощающего материала или диэлектрика, на который нанесен тонкий поглощающий слой. 

Поверхностные аттенюаторы широко используются как в качестве фиксированных, так и в качестве переменных. Конструктивно поверхностные аттенюаторы подразделяются на три типа:

аттенюаторы ножевого типа;

аттенюаторы с пластиной (или пластинами), перемещающейся от узкой стенки к центру волновода;

аттенюаторы поляризационного типа.

 

Аттенюаторы ножевого типа представляют собой отрезок волновода, в который через продольную щель и середине широкой стенки вводится поглощающая пластина со скосами для согласования (рис. 5.2, а). Поскольку в волноводе распространяется волна типа Н10, то поперечные токи в середине широкой стенки отсутствуют и, следовательно, продольная щель, прорезанная точно в середине широкой стенки, не будет излучать и влиять на структуру поля внутри волновода. При максимальном погружении пластины в волновод затухание, вносимое аттенюатором, будет максимальным. Начальное ослабление таких аттенюаторов порядка 0,3-0,5 дб, максимальное ослаблениепорядка 20-40 дб, Кбвпорядка0,85-0,95. Поверхностное сопротивление поглощающихпластин150-400 ом/см2.

В сантиметровом диапазоне волн наиболее широко в качестве поглощающих покрытий диэлектрических пластин используются углеродистые покрытия, в миллиметровом — нихромовые. Максимальная входная мощность такихаттенюаторовпорядка 0, 1 вт.

Рис5.2. Переменный аттенюатор ножевого типа: а – схема: б – градуированная кривая: в – кулачок.

Для аттенюаторов с невысокой точностью и сравнительно небольшимдопустимым Кбн диэлектрическую пластину, служащую основанием для поглощающего покрытия, можно изготовлять из гетинакса или другого диэлектрика, обладающего средними качествами в отношении стабильности параметров в зависимости от температуры, влажности и времени. У точных аттенюаторов пластина должна изготовляться из таких диэлектриков, как кварц, слюда, керамика.

При проектировании аттенюаторов на большие значения входных мощностей поглощающая пластина изготовляется целиком из поглощающих материалов. Например, аттенюаторы с поглощающей пластиной, изготовляемой из армированного СКБ-90, выдерживают мощности до 3 вт.

До настоящего времени не существует точных методов расчета размеров поглощающих пластин. Длина ее со скосами для согласования лежит в пределах (3,5-6) l0, где l0 — средняя длина волны рабочего диапазона.

Для линеаризации кривой зависимости ослабления от глубины погружения поглощающей пластины применяются кулачки со специальным профилем, позволяющие вводить поглощающую пластину по определенному закону. Расчет профиля кулачка производится на основании графика зависимости ослабления поглощающей пластины от глубины погружения ее Сдб=f(l). Этот график строится на основании экспериментальных данных. Ниже будет рассмотрен один из способов расчета профиля кулачка для кривой Сдб=f(l), показанной на рис. 5.2,б.

Весь диапазон ослаблений аттенюатора разбивается на n одинаковых частей и по кривой Сдб=f(l) находятся величины l1, l2, l3, и т. д. Затем вычерчивается окружность радиусом r, который определяет начальное положение поглощающей пластины (нулевое затухание), рис. 5,2, в. Окружность делится на (n+1) частей. Через полученные деления на окружности и центр проводятся прямые. На первой прямой откладывается расстояние r+l1 на 2-й — r+l2 и т. д. Точки А1, А2, А3, и т. д. определяют профиль кулачка.

Основными недостатками аттенюаторов ножевого типа являются значительная зависимость ослабления от частоты и невысокая точность. Обычно они используются в качестве развязывающих. Аттенюаторы ножевого типа могут быть созданы во всем практически применяемом диапазоне, включая миллиметровый.

Аттенюаторы с пластиной, перемещающейся от узкой стенки к центру волновода, представляют собой отрезок волновода, в который помещается поглощающая пластина параллельно узкой стенке (рис. 5,5, а). Пластина крепится на диэлектрическом стержне, позволяющем передвигать ее от узкой стенки к центру волновода. При помещении поглощающей пластины в центр волновода, то есть в максимум напряженности электрического поля, ослабление аттенюатора будет максимальным. Для согласования пластины с волноводом на ней сделаны скосы.

Рис. 5.5. Переменные аттенюаторы с поглощающими пластинами, перемещающимися от узкой стенки к центру волновода: а - с одной пластиной; б - с двумя пластинами.

Помимо аттенюаторов с одной поглощающей пластиной, нашли применение аттенюаторы с двумя пластинами, одновременно вдвигаемыми в волновод (рис. 5.5, б). Они позволяют получить большее ослабление и менее критичны к частоте. Диапазон частот их порядка 50%, а у аттенюаторов с одной пластиной порядка 30%. Пределы ослабления таких аттенюаторов порядка 0,3-40 дб, Кбв»0,85-0,95.

Выбор материала для пластин, покрытий их производится из тех же соображений, что и для аттенюаторов ножевого типа. Поглощающее покрытие обычно наносится на одну сторону диэлектрической пластины. Для уменьшения начального затухания пластина устанавливается поглощающим слоем в сторону ближайшей узкой стенки. Если пластина будет целиком покрыта поглощающим слоем или выполнена целиком из поглощающего материала, то начальное затухание таких аттенюаторов получается порядка нескольких децибел.

При определенных высотах пластин наступает резонанс, существенно ухудшающий характеристики аттенюатора. Обычно высота пластин выбирается порядка

ll=(0,85 - 0,87)b,(5.7)

где b — размер узкой стенки волновода. 

Длина пластины выбирается обычно в пределах

1=(2 - 5)lв,(5.8)

где lв — длина волны в волноводе. 

Максимальное затухание аттенюаторов с пластинами такой длины лежит в пределах 20—40 дб. Толщина пластин берется порядка 0,5-З мм. Длина скосов пластины для обеспечения хорошего согласования берется приблизительно равной длине волны. Для линеаризации градуировочной кривой ослабления применяются кулачки, расчет профиля которых приведен в предыдущем разделе.

Рис. 5.6. Поляризационный аттенюатор: а — схема аттенюатора; б—векторные диаграммы

Аттенюаторы рассматриваемого типа обладают приблизительно теми же недостатками, что и аттенюаторы ножевого типа. Диапазон использования их несколько уже, чем аттенюаторов ножевого типа. Рассматриваемое аттенюаторы не используются в миллиметровом диапазоне из-за малых размеров применяемых волноводов.

Аттенюаторы поляризационного типа конструктивно состоят из трех полноводных секций — I, II, III (рис. 5.6, а), в которые помещены диэлектрические пластины, покрытые поглощающим слоем и разделяющие секции волноводов на 2 равные части. В крайних секциях (I, III) поглощающие пластины расположены в одной плоскости. Средняя секция II представляет собой отрезок круглого волновода и может вращаться вокруг продольной оси вместе с поглощающей пластиной. Крайние секции — I и III представляют собой переходы от прямоугольного к круглому волноводу. С помощью этих переходов происходит трансформация волны типа Н10 для прямоугольного волновода в волну типа Н11 для круглого волновода и наоборот. Поглощающие пластины в крайних секциях расположены так, что линии электрического поля распространяющейся волны нормальны плоскости поглощающих пластин. Если поглощающую пластину средней секции расположить в плоскости крайних пластин (q°==0°), то в этом случае волна будет проходить через аттенюатор без ослабления. При повороте средней секции на некоторый угол q° электрическая составляющая электромагнитной волны может быть разложена на две составляющие: параллельную  и перпендикулярную  к плоскости поглощающей пластины (рис. 5.6, б):

(5.9)

.

Электрическая составляющая, параллельная пластине II секции —  , поглотитсяпластиной,а нанормальнуюсоставляющую  пластина не будет оказывать влияния. Составляющая  на входе секции III будет находиться под углом (90°—q°) к поглощающей пластине секции III. Ее в свою очередь можно разложить на две составляющие: параллельную и перпендикулярную  к поглощающей пластине секции III.

,

.(5.10)

Нормальная составляющая — без ослабления пройдет через секцию III, а составляющая  полностью поглотится.

Таким образом, коэффициент передачи по напряженности будет равен

k =cos2q,(5.11)

по мощности — k2 = cos4q.(5.12)

Ослабление аттенюатора в децибелах будет

С == -40 lg cos qдб.(5.13)

Полученное выражение показывает, что при отсутствии отражений от концов пластин и в случае бесконечно большой поглощающей способности пластин ослабление аттенюатора зависит только от угла поворота пластины средней секции и не зависит от частоты. Частотный диапазон таких аттенюаторов ограничивается волноводом. Аттенюаторы поляризационного типа в основном применяются в качестве прецизионных.Обычно начальное ослабление таких аттенюаторов порядка 1—2 дб, максимальное ослабление порядка 40—60 дб, Кбв»0,87-0,9, допустимая мощность рассеяния до 1 вт.

Выбор диаметра круглого волновода производится из условия существования только волны основного типа Н11 и отсутствия волн высших типов ( в первую очередь волн Е01 и Н21}. Наличие волн высших типов приводит к появлению значительных ошибок. При этом наибольшее влияние на точность работы аттенюатора окажет волна типа Н21, поскольку волна Е01 поглотится пластиной. Это становится понятным при рассмотрении структуры поля этих волн. Следовательно, условие существования в круглом волноводе только волны основного типа запишется

                                                           (5.15),

где lкрН21 — критическая длина волны типа Н21

lкрН11 — критическая длина волны типа Н11,

l — рабочая длина волны. 

Или, подставляя значения критических длин волн,

2,057r<l< 3,412r,

где r — радиус круглого волновода.

Отсюда, условие для выбора радиуса круглого волновода запишется:

.(5.16)

Наиболее технологической конструкция будет в том случае, если диаметр круглого волновода равен диагонали прямоугольного волновода. При этом условие (5.16) соблюдается.

Длина пластины средней секции выбирается исходя из величины требуемого максимального ослабления. Так, например, для получения ослабления в 45 дб в аттенюаторах с нихромовым покрытием поглощающих пластин длина средней секции берется порядка

l=(3-5,5)lмакс.(5.17)

В качестве основы поглощающих пластин обычно берется слюда, обладающая малой толщиной и стабильной формой. Поглощающим покрытием обычно служит нихром или платина.

Длина переходов от прямоугольного волновода к круглому выбирается в пределах

lпер=(2-4)lмакс,(5.18)

здесь lмакс —максимальная длина волны рабочего диапазона в волноводе.

Достоинствами поляризационных аттенюаторов являются:

широкополосность (зависимость ослабления от частоты практически отсутствует);

возможность градуировки расчетным путем;

отсутствие зависимости ослабления от изменения (в некоторых пределах) поверхностного сопротивления поглощающих пластин.

К недостаткам относятся различные конструктивные и технологические трудности. Погрешность, обусловленная разрешающей способностью механизма перемещения, растет с увеличением угла q, то есть с увеличением вводимого ослабления. Так, например, если допустимая погрешность составляет 0,1 дб при ослаблении 45 дб, то разрешающая способность механизма перемещения должна быть равна 5 угловым минутам. Таким образом, к конструкции прецизионных аттенюаторов должны предъявляться высокие требования.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]