
- •Введение
- •1.1.2 Земной эллипсоид
- •1.1.3 Основные линии и плоскости эллипсоида
- •1.2 Азимуты направлений
- •1.2.1 Географические координаты
- •1.2.2 Азимуты направлений
- •1.2.3 Плоские прямоугольные координаты и дирекционный угол
- •1.2.4 Связь между дирекционным углом и геодезическим азимутом
- •1.2.5 Высоты точек
- •1.3 Система координат 1942 года
- •1.4 Геодезические, нивелирные и гравиметрические сети
- •1.4.1 Геодезические сети
- •1.4.2 Нивелирные сети
- •1.4.3 Гравиметрические сети
- •1.5 Центры и знаки геодезической, нивелирной и гравиметрической сетей
- •1.5.1 Центры
- •1.5.2 Геодезические знаки
- •1.5.3 Постройка простой пирамиды
- •2 Правила вычислений, ошибки измерений
- •2.1 Основные правила вычислений
- •2.1.1 Общие правила вычислений
- •2.1.2 Правила округления чисел
- •2.1.3 Правила действий с приближенными числами
- •2.2 Сведения о тригонометрических функциях
- •2.2.1 Тригонометрические функции острого угла
- •2.2.2 Тригонометрические функции произвольного угла
- •2.2.3 Таблицы натуральных значений тригонометрических функций
- •2.3 Основные геодезические задачи
- •2.3.1 Прямая геодезическая задача
- •2.3.2 Обратная геодезическая задача
- •2.3.3 Решение треугольника
- •2.4 Ошибки измерений
- •2.4.1 Понятие об измерениях
- •2.4.2 Классификация ошибок измерений
- •2.4.3 Оценка точности результатов измерений
- •2.4.4 Средняя квадратичная ошибка
- •2.4.5 Относительная ошибка
- •2.4.6 Предельная ошибка
- •3 Приборы для измерения углов, расстояний и превышений
- •3.1 Угломерные приборы. Измерение углов
- •3.1.1 Теодолит т2
- •3.1.2 Теодолит т5
- •3.1.3 Теодолиты 2т30, 2т30п
- •3.1.4 Поверки и юстировки теодолитов т2, т5, т5 к
- •1. Поверка перпендикулярности оси уровня при алидаде горизонтального круга к вертикальной оси вращения теодолита.
- •2. Поверка правильности вращения алидады горизонтального круга.
- •3. Поверка правильности установки сетки нитей зрительной трубы.
- •4. Поверка перпендикулярности визирной оси трубы к оси вращения трубы (поверка коллимационной ошибки).
- •3.1.5 Поверка перпендикулярности горизонтальной трубы к вертикальной оси вращения теодолита
- •5. Поверка правильности вращения трубы вокруг горизонтальной оси.
- •6. Поверка уровня при алидаде вертикального круга.
- •7. Поверка компенсатора теодолита т5к.
- •8. Поверка места нуля теодолита т5к.
- •9. Поверка оптического отвеса.
- •3.1.6 Поверки и юстировки теодолита 2т30
- •1. Ось цилиндрического уровня на алидаде горизонтального круга должна быть перпендикулярна к вертикальной оси.
- •2. Визирная ось зрительной трубы должна быть перпендикулярна к горизонтальной оси.
- •4. Основной вертикальный штрих сетки нитей должен быть перпендикулярен к горизонтальной оси.
- •5. Место нуля вертикального круга должно быть известно или приведено к нулю.
- •3.1.7 Подготовка теодолита к работе. Правила обращения с теодолитом
- •3.1.8 Измерение горизонтальных углов
- •3.1.9 Измерение вертикальных углов
- •3.1.10 Определение элементов приведения
- •3.2. Приборы для измерения расстоянии
- •3.2.1 Землемерные стальные ленты
- •3.2.2 Измерение линий мерными лентами
- •3.2.3 Светодальномеры
- •3.3 Нивелиры. Геометрическое нивелирование
- •3.3.1 Нивелир н3
- •3.3.2 Нивелир нс3
- •3.3.3 Нивелир нс4
- •3.3.4 Нивелир нв-1
- •3.3.5 Нивелирные рейки
- •3.3.6 Поверки нивелиров
- •5. Поверка правильности установки круглого уровня на рейке.
- •3.3.7 Порядок работы при нивелировании
- •4 Геодезическое ориентирование
- •4.1 Общие понятия о геодезическом ориентировании
- •4.2 Определение координат при передаче ориентирования
- •4.2.1 Определение координат отдельных точек
- •4.2.2 Определение координат точек методом полигонометрии
- •4.2.3 Отыскание грубых ошибок в полигонометрических ходах
- •4.2.4 Определение координат точек методом триангуляции
- •5 Определение высот отдельных точек
- •5.1 Определение высот точек методом геометрического нивелирования
- •5.2 Определение высот точек методом тригонометрического нивелирования
- •6 Топографические карты
- •6.1 Основные разновидности карт
- •6.2 Математическая основа карт
- •6.3 Топографические карты
- •6.4 Специальные карты и планы городов
- •6.5 Проекция топографических карт
- •6.6 Разграфка и номенклатура топографических карт
- •6.7 Рельеф местности и его изображение на картах
- •6.7.1 Формы рельефа
- •6.7.2 Характеристика скатов
- •6.7.3 Изображение рельефа на картах
- •6.7.4 Изображение форм рельефа, не выражающихся на карте горизонталями
- •6.7.5 Особенности изображения рельефа на топографических картах масштабов 1: 500 000 и 1 : 1 000 000
- •6.7.6 Изучение рельефа по карте
- •6.7.7 Изучение рельефа по карте
- •6.8 Содержание топографических карт
- •6.8.1 Основные элементы содержания карты
- •6.8.2 Гидрография
- •6.8.3 Гидротехнические сооружения
- •6.8.4 Растительный покров и грунты
- •6.8.5 Дорожная сеть
- •6.8.6 Населенные пункты
- •6.8.7 Промышленные, сельскохозяйственные и социально-культурные объекты
- •6.8.8 Геодезические пункты
- •6.8.9 Границы
- •6.8.10 Зарамочное оформление карт
- •6.9 Измерения по карте
- •6.9.1 Измерение расстояний
- •6.9.2 Измерение длины маршрута
- •6.9.3 Определение площадей
- •6.9.4 Определение азимутов и дирекционных углов
- •6.10 Определение координат объектов на земной поверхности
- •6.10.1 Системы координат, применяемые в топографии
- •6.10.2 Определение географических (геодезических) координат точек по карте
- •6.10.3 Плоские прямоугольные координаты и топографическая карта
- •6.10.4 Полярные и биполярные координаты
- •6.10.5 Звездное небо
6.10 Определение координат объектов на земной поверхности
6.10.1 Системы координат, применяемые в топографии
Система координат представляет собой совокупность линий и плоскостей, ориентированных определенным образом в пространстве, относительно которых определяют положение точек. Линии, принятые за начальные, служат осями координат, а плоскости – координатными плоскостями. Угловые и линейные величины, которыми определяется в той или иной системе координат положение точек на линии, поверхности или в пространстве, называются координатами.
В науке, технике, архитектуре существуют различные системы координат. В каждом конкретном случае применяются системы координат, которые наилучшим образом отвечают требованиям к определению положения точек.
Положение точек на поверхности Земли в зависимости от характера решаемых задач и требуемой точности чаще всего определяют в системах географических, плоских прямоугольных полярных и биполярных координат. Пространственное положение точек в каждой системе координат дополнительно определяется высотой этих точек над уровенной поверхностью, принятой за начальную (см. подраздел 6.7.3).
Указанные выше системы координат широко применяются в топографии. Они позволяют сравнительно просто и однозначно определять с необходимой точностью положения точек на земной поверхности по результатам измерений, выполненных непосредственно на местности или по карте. Система географических координат является единой для всей поверхности Земли. Она позволяет определять взаимное положение расположенных точек на значительных расстояниях друг от друга.
При решении использование этой системы ограничено неудобствами работы с координатами, выраженными в градусах, минутах и секундах.
Системой плоских прямоугольных координат какой-либо зоны связана с системой координат остальных зон и с системой географических координат точек на поверхности земли.
Прямоугольные координаты находят наиболее широкое применение при решении практических задач на местности и по карте. Они удобнее географических координат, так как оперировать линейными величинами проще, чем угловыми.
Система полярных координат состоит из точки, называемой полюсом, и начального направления – полярной оси. Положение любой точки на земной поверхности в этой системе координат определяется углом направления на нее относительно полярной оси и расстоянием от полюса до точки. При топогеодезической подготовке запуска искусственных спутников Земли в некоторых других случаях географические или прямоугольные координаты перевычисляют в полярные координаты. Часто система полярных координат используется как местная система, например, при указании по азимуту и дальности до точки.
Система биполярных координат (двухполюсная система) состоит из двух фиксированных точек, называемых полюсами, и направления между ними, которое называется базисом или базой засечки. Положение любой точки на земной поверхности определяется в этой системе двумя углами направлений с полюсов на точку относительно базиса. Если видимости между полюсами нет, то направления на точку в этой системе координат можно определять относительно какого-либо другого направления, принятого за начальное, например направления магнитного меридиана. Система биполярных координат часто применяется при засечке точек, высотных реперов и т. п.