
- •Введение
- •1.1.2 Земной эллипсоид
- •1.1.3 Основные линии и плоскости эллипсоида
- •1.2 Азимуты направлений
- •1.2.1 Географические координаты
- •1.2.2 Азимуты направлений
- •1.2.3 Плоские прямоугольные координаты и дирекционный угол
- •1.2.4 Связь между дирекционным углом и геодезическим азимутом
- •1.2.5 Высоты точек
- •1.3 Система координат 1942 года
- •1.4 Геодезические, нивелирные и гравиметрические сети
- •1.4.1 Геодезические сети
- •1.4.2 Нивелирные сети
- •1.4.3 Гравиметрические сети
- •1.5 Центры и знаки геодезической, нивелирной и гравиметрической сетей
- •1.5.1 Центры
- •1.5.2 Геодезические знаки
- •1.5.3 Постройка простой пирамиды
- •2 Правила вычислений, ошибки измерений
- •2.1 Основные правила вычислений
- •2.1.1 Общие правила вычислений
- •2.1.2 Правила округления чисел
- •2.1.3 Правила действий с приближенными числами
- •2.2 Сведения о тригонометрических функциях
- •2.2.1 Тригонометрические функции острого угла
- •2.2.2 Тригонометрические функции произвольного угла
- •2.2.3 Таблицы натуральных значений тригонометрических функций
- •2.3 Основные геодезические задачи
- •2.3.1 Прямая геодезическая задача
- •2.3.2 Обратная геодезическая задача
- •2.3.3 Решение треугольника
- •2.4 Ошибки измерений
- •2.4.1 Понятие об измерениях
- •2.4.2 Классификация ошибок измерений
- •2.4.3 Оценка точности результатов измерений
- •2.4.4 Средняя квадратичная ошибка
- •2.4.5 Относительная ошибка
- •2.4.6 Предельная ошибка
- •3 Приборы для измерения углов, расстояний и превышений
- •3.1 Угломерные приборы. Измерение углов
- •3.1.1 Теодолит т2
- •3.1.2 Теодолит т5
- •3.1.3 Теодолиты 2т30, 2т30п
- •3.1.4 Поверки и юстировки теодолитов т2, т5, т5 к
- •1. Поверка перпендикулярности оси уровня при алидаде горизонтального круга к вертикальной оси вращения теодолита.
- •2. Поверка правильности вращения алидады горизонтального круга.
- •3. Поверка правильности установки сетки нитей зрительной трубы.
- •4. Поверка перпендикулярности визирной оси трубы к оси вращения трубы (поверка коллимационной ошибки).
- •3.1.5 Поверка перпендикулярности горизонтальной трубы к вертикальной оси вращения теодолита
- •5. Поверка правильности вращения трубы вокруг горизонтальной оси.
- •6. Поверка уровня при алидаде вертикального круга.
- •7. Поверка компенсатора теодолита т5к.
- •8. Поверка места нуля теодолита т5к.
- •9. Поверка оптического отвеса.
- •3.1.6 Поверки и юстировки теодолита 2т30
- •1. Ось цилиндрического уровня на алидаде горизонтального круга должна быть перпендикулярна к вертикальной оси.
- •2. Визирная ось зрительной трубы должна быть перпендикулярна к горизонтальной оси.
- •4. Основной вертикальный штрих сетки нитей должен быть перпендикулярен к горизонтальной оси.
- •5. Место нуля вертикального круга должно быть известно или приведено к нулю.
- •3.1.7 Подготовка теодолита к работе. Правила обращения с теодолитом
- •3.1.8 Измерение горизонтальных углов
- •3.1.9 Измерение вертикальных углов
- •3.1.10 Определение элементов приведения
- •3.2. Приборы для измерения расстоянии
- •3.2.1 Землемерные стальные ленты
- •3.2.2 Измерение линий мерными лентами
- •3.2.3 Светодальномеры
- •3.3 Нивелиры. Геометрическое нивелирование
- •3.3.1 Нивелир н3
- •3.3.2 Нивелир нс3
- •3.3.3 Нивелир нс4
- •3.3.4 Нивелир нв-1
- •3.3.5 Нивелирные рейки
- •3.3.6 Поверки нивелиров
- •5. Поверка правильности установки круглого уровня на рейке.
- •3.3.7 Порядок работы при нивелировании
- •4 Геодезическое ориентирование
- •4.1 Общие понятия о геодезическом ориентировании
- •4.2 Определение координат при передаче ориентирования
- •4.2.1 Определение координат отдельных точек
- •4.2.2 Определение координат точек методом полигонометрии
- •4.2.3 Отыскание грубых ошибок в полигонометрических ходах
- •4.2.4 Определение координат точек методом триангуляции
- •5 Определение высот отдельных точек
- •5.1 Определение высот точек методом геометрического нивелирования
- •5.2 Определение высот точек методом тригонометрического нивелирования
- •6 Топографические карты
- •6.1 Основные разновидности карт
- •6.2 Математическая основа карт
- •6.3 Топографические карты
- •6.4 Специальные карты и планы городов
- •6.5 Проекция топографических карт
- •6.6 Разграфка и номенклатура топографических карт
- •6.7 Рельеф местности и его изображение на картах
- •6.7.1 Формы рельефа
- •6.7.2 Характеристика скатов
- •6.7.3 Изображение рельефа на картах
- •6.7.4 Изображение форм рельефа, не выражающихся на карте горизонталями
- •6.7.5 Особенности изображения рельефа на топографических картах масштабов 1: 500 000 и 1 : 1 000 000
- •6.7.6 Изучение рельефа по карте
- •6.7.7 Изучение рельефа по карте
- •6.8 Содержание топографических карт
- •6.8.1 Основные элементы содержания карты
- •6.8.2 Гидрография
- •6.8.3 Гидротехнические сооружения
- •6.8.4 Растительный покров и грунты
- •6.8.5 Дорожная сеть
- •6.8.6 Населенные пункты
- •6.8.7 Промышленные, сельскохозяйственные и социально-культурные объекты
- •6.8.8 Геодезические пункты
- •6.8.9 Границы
- •6.8.10 Зарамочное оформление карт
- •6.9 Измерения по карте
- •6.9.1 Измерение расстояний
- •6.9.2 Измерение длины маршрута
- •6.9.3 Определение площадей
- •6.9.4 Определение азимутов и дирекционных углов
- •6.10 Определение координат объектов на земной поверхности
- •6.10.1 Системы координат, применяемые в топографии
- •6.10.2 Определение географических (геодезических) координат точек по карте
- •6.10.3 Плоские прямоугольные координаты и топографическая карта
- •6.10.4 Полярные и биполярные координаты
- •6.10.5 Звездное небо
6.9.2 Измерение длины маршрута
Длину маршрута измеряют по карте обычно курвиметром (рисунок 105). Стандартный курвиметр имеет две шкалы для измерения расстояний по карте: с одной стороны метрическую (от 0 до 100 см), с другой стороны дюймовую (от 0 до 39,4 дюйма) Механизм курвиметра состоит из обводного колеса, соединенного системой зубчатых передач со стрелкой. Для измерения длины линии на карте следует предварительно вращением обводного колеса установить стрелку курвиметра на начальное (нулевое) деление шкалы, а затем прокатить обводное колесо строго по измеряемой линии. Полученный отсчет по шкале курвиметра необходимо умножить на величину масштаба карты.
Правильность работы курвиметра проверяют путем измерения известной длины линии, например расстояния между линиями километровой сетки на карте. Погрешность в измерении линии длиной 50 см курвиметром составляет не более 0,25 см.
Рисунок 105 – Курвиметр КУ А; 1 – Корпус; 2 – шкала; 3 – стрелка; 4 – указатель; 5 – обводное колесо
Протяженность маршрута на карте может быть измерена также циркулем измерителем (см. подразд.6.9.1).
Измеренная по карте длина маршрута всегда будет несколько короче действительной, так как при составлении карт, особенно мелкомасштабных, дороги спрямляют. В холмистой и горной местности, кроме того, имеется значительная разность между горизонтальным проложением маршрута и его действительной длиной из-за подъемов и спусков. По этим причинам в измеренную по карте длину маршрута необходимо вводить поправку. Поправочные коэффициенты, таблица 45, для разных типов местности и масштабов карт неодинаковы.
Таблица 45 – Поправочные коэффициенты
|
Поправочный коэффициент для карты масштаба |
|||
1:50 000 |
1:100 000 |
1:200 000 |
1:500 000 |
|
Равнинная |
1,0 |
1,0 |
1,5 |
1,5 |
Холмистая |
1,05 |
1,10 |
1,15 |
1,20 |
Горная |
1,15 |
1,20 |
1,25 |
1,30 |
Из таблицы видно, что в холмистой и горной местности разность между, измеренной по карте и действительной протяженностью маршрута значительная. Например, измеренная по карте масштаба 1:100 000 горного района длина маршрута равна 150 км, а действительная длина его будет 150·1,20=180 км.
Поправку в длину маршрута можно вводить непосредственно при его измерении по карте циркулем-измерителем, устанавливая «шаг» циркуля-измерителя с учетом поправочного коэффициента.
6.9.3 Определение площадей
Площадь участка местности определяют по карте чаще всего подсчетом квадратов координатной сетки, покрывающих этот участок. Величину долей квадратов определяют на глаз или с помощью специальной палетки на линейке. Каждый квадрат образуемый линиями координатной сетки на карте масштаба 1:50 000, соответствует на местности 1 км2, на карте масштаба 1:100 000 – 4 км2, .на карте масштаба 1:200 000 – 6 км2.
При измерении больших площадей по карте или фотодокументам применяется геометрический способ, который заключается в измерении линейных элементов участка и последующем вычислении его площади по формулам геометрии. Если участок на карте имеет сложную конфигурацию, его делят прямыми линиями на прямоугольники, треугольники, трапеции и вычисляют площади полученных фигур.
Площадь разрушений в районе землетрясения
подсчитывают по формуле
.
Величину радиуса R
измеряют по карте. Например, радиус
сильных разрушений в эпицентре равен
3,5 км. Тогда Р=3,14*12,25 = 38,5 км2.
Площадь местности рассчитывают по формуле для определения площади трапеции. Приближенно эту площадь можно вычислить по формуле для определения площади сектора круга
(0)
где R – радиус круга, км; а – хорда, км.