
- •Введение
- •1.1.2 Земной эллипсоид
- •1.1.3 Основные линии и плоскости эллипсоида
- •1.2 Азимуты направлений
- •1.2.1 Географические координаты
- •1.2.2 Азимуты направлений
- •1.2.3 Плоские прямоугольные координаты и дирекционный угол
- •1.2.4 Связь между дирекционным углом и геодезическим азимутом
- •1.2.5 Высоты точек
- •1.3 Система координат 1942 года
- •1.4 Геодезические, нивелирные и гравиметрические сети
- •1.4.1 Геодезические сети
- •1.4.2 Нивелирные сети
- •1.4.3 Гравиметрические сети
- •1.5 Центры и знаки геодезической, нивелирной и гравиметрической сетей
- •1.5.1 Центры
- •1.5.2 Геодезические знаки
- •1.5.3 Постройка простой пирамиды
- •2 Правила вычислений, ошибки измерений
- •2.1 Основные правила вычислений
- •2.1.1 Общие правила вычислений
- •2.1.2 Правила округления чисел
- •2.1.3 Правила действий с приближенными числами
- •2.2 Сведения о тригонометрических функциях
- •2.2.1 Тригонометрические функции острого угла
- •2.2.2 Тригонометрические функции произвольного угла
- •2.2.3 Таблицы натуральных значений тригонометрических функций
- •2.3 Основные геодезические задачи
- •2.3.1 Прямая геодезическая задача
- •2.3.2 Обратная геодезическая задача
- •2.3.3 Решение треугольника
- •2.4 Ошибки измерений
- •2.4.1 Понятие об измерениях
- •2.4.2 Классификация ошибок измерений
- •2.4.3 Оценка точности результатов измерений
- •2.4.4 Средняя квадратичная ошибка
- •2.4.5 Относительная ошибка
- •2.4.6 Предельная ошибка
- •3 Приборы для измерения углов, расстояний и превышений
- •3.1 Угломерные приборы. Измерение углов
- •3.1.1 Теодолит т2
- •3.1.2 Теодолит т5
- •3.1.3 Теодолиты 2т30, 2т30п
- •3.1.4 Поверки и юстировки теодолитов т2, т5, т5 к
- •1. Поверка перпендикулярности оси уровня при алидаде горизонтального круга к вертикальной оси вращения теодолита.
- •2. Поверка правильности вращения алидады горизонтального круга.
- •3. Поверка правильности установки сетки нитей зрительной трубы.
- •4. Поверка перпендикулярности визирной оси трубы к оси вращения трубы (поверка коллимационной ошибки).
- •3.1.5 Поверка перпендикулярности горизонтальной трубы к вертикальной оси вращения теодолита
- •5. Поверка правильности вращения трубы вокруг горизонтальной оси.
- •6. Поверка уровня при алидаде вертикального круга.
- •7. Поверка компенсатора теодолита т5к.
- •8. Поверка места нуля теодолита т5к.
- •9. Поверка оптического отвеса.
- •3.1.6 Поверки и юстировки теодолита 2т30
- •1. Ось цилиндрического уровня на алидаде горизонтального круга должна быть перпендикулярна к вертикальной оси.
- •2. Визирная ось зрительной трубы должна быть перпендикулярна к горизонтальной оси.
- •4. Основной вертикальный штрих сетки нитей должен быть перпендикулярен к горизонтальной оси.
- •5. Место нуля вертикального круга должно быть известно или приведено к нулю.
- •3.1.7 Подготовка теодолита к работе. Правила обращения с теодолитом
- •3.1.8 Измерение горизонтальных углов
- •3.1.9 Измерение вертикальных углов
- •3.1.10 Определение элементов приведения
- •3.2. Приборы для измерения расстоянии
- •3.2.1 Землемерные стальные ленты
- •3.2.2 Измерение линий мерными лентами
- •3.2.3 Светодальномеры
- •3.3 Нивелиры. Геометрическое нивелирование
- •3.3.1 Нивелир н3
- •3.3.2 Нивелир нс3
- •3.3.3 Нивелир нс4
- •3.3.4 Нивелир нв-1
- •3.3.5 Нивелирные рейки
- •3.3.6 Поверки нивелиров
- •5. Поверка правильности установки круглого уровня на рейке.
- •3.3.7 Порядок работы при нивелировании
- •4 Геодезическое ориентирование
- •4.1 Общие понятия о геодезическом ориентировании
- •4.2 Определение координат при передаче ориентирования
- •4.2.1 Определение координат отдельных точек
- •4.2.2 Определение координат точек методом полигонометрии
- •4.2.3 Отыскание грубых ошибок в полигонометрических ходах
- •4.2.4 Определение координат точек методом триангуляции
- •5 Определение высот отдельных точек
- •5.1 Определение высот точек методом геометрического нивелирования
- •5.2 Определение высот точек методом тригонометрического нивелирования
- •6 Топографические карты
- •6.1 Основные разновидности карт
- •6.2 Математическая основа карт
- •6.3 Топографические карты
- •6.4 Специальные карты и планы городов
- •6.5 Проекция топографических карт
- •6.6 Разграфка и номенклатура топографических карт
- •6.7 Рельеф местности и его изображение на картах
- •6.7.1 Формы рельефа
- •6.7.2 Характеристика скатов
- •6.7.3 Изображение рельефа на картах
- •6.7.4 Изображение форм рельефа, не выражающихся на карте горизонталями
- •6.7.5 Особенности изображения рельефа на топографических картах масштабов 1: 500 000 и 1 : 1 000 000
- •6.7.6 Изучение рельефа по карте
- •6.7.7 Изучение рельефа по карте
- •6.8 Содержание топографических карт
- •6.8.1 Основные элементы содержания карты
- •6.8.2 Гидрография
- •6.8.3 Гидротехнические сооружения
- •6.8.4 Растительный покров и грунты
- •6.8.5 Дорожная сеть
- •6.8.6 Населенные пункты
- •6.8.7 Промышленные, сельскохозяйственные и социально-культурные объекты
- •6.8.8 Геодезические пункты
- •6.8.9 Границы
- •6.8.10 Зарамочное оформление карт
- •6.9 Измерения по карте
- •6.9.1 Измерение расстояний
- •6.9.2 Измерение длины маршрута
- •6.9.3 Определение площадей
- •6.9.4 Определение азимутов и дирекционных углов
- •6.10 Определение координат объектов на земной поверхности
- •6.10.1 Системы координат, применяемые в топографии
- •6.10.2 Определение географических (геодезических) координат точек по карте
- •6.10.3 Плоские прямоугольные координаты и топографическая карта
- •6.10.4 Полярные и биполярные координаты
- •6.10.5 Звездное небо
2.3.3 Решение треугольника
Решением треугольника называется определение всех его сторон и углов по трем известным элементам, из которых хотя бы один должен быть его стороной.
Решение треугольника осуществляют по формулам соотношений его элементов, известных из курса тригонометрии.
Обозначив в треугольнике AВС (рисунок 31) стороны через а, в и с, а углы через А, В и С, запишем основные соотношения:
А + В + С = 180° (теорема суммы углов);
(теорема синусов);
а2 = в2 + с2 – 2·в·сcos A (теорема косинусов);
(теорема тангенсов)
и дополнительные соотношения:
Sin A = Sin· (B + C);
.
Рисунок 31 – Треугольник
Пример. Пусть в треугольнике ABC (рисунок 31) известны сторона в и углы А и В. Необходимо найти угол С и стороны а и с.
Решение проводят в следующем порядке:
угол С находят по теореме суммы углов
С = 180о – (А + В);
стороны а и с вычисляют по теореме синусов
;
;
контроль вычислений осуществляют по формуле
.
Пример вычислений приведен в таблице 9.
Таблица 9 – Решение треугольника
-
№
действия
Элемент формулы
Величина
1
А
86о15'43"
2
4
5
В
С = [180o – (1) + (2)]
Контроль:
(1) + (2) +(4) = 180о
46о34'52"
47о09'25"
180о00'00"
6
7
8
Sin A
Sin B
Sin C
0,997 873
0,726 348
0,733 220
9
3
10
11
а = (3)
в
с = (3)
Контроль:
аконтр = (10)
6о448,3
4о693,7
4о738,1
6о448,3
Контрольные вопросы и упражнения:
1. Дать определение прямой и обратной геодезических задач.
2. Дать вывод формул решений прямой (обратной) геодезической задачи.
3. Решить прямую задачу по данным: x1 =6 104 172,8; y1 = 5 565 542,8;
s = 4 021,4; α1, 2 =57°57'54".
Ответ: x2 = 6 106 212,4; у2 = 5 568 802,5.
4. Решить обратную задачу по данным:
x1 = 6 114 133,5; х2 = 6 107 134,0; у1 = 5.565 596,8; у2 = 5 574 985,3. |
Ответ: α1, 2 = 126°42'21"; s =11710,5.
|
5. Решить треугольник по данным:
а) A = 86°49'11"; В = 36°52'12"; в = 7 211,2.
|
Ответ: С = 56°18'37"; а = 12 000,1; с = 10 000,1. |
б) а=5590,2; s = 9 340,7; С = 84°46'51". |
Ответ: с = 10 440,2; А = 32°13'26"; В = 62°59'43". |
в) а = 10 440,2; в = 12530,0; с = 8 944,2.
|
Ответ: А = 55°10'30"; В = 80°08'05"; С = 44°41 '25". |