
- •Введение
- •1.1.2 Земной эллипсоид
- •1.1.3 Основные линии и плоскости эллипсоида
- •1.2 Азимуты направлений
- •1.2.1 Географические координаты
- •1.2.2 Азимуты направлений
- •1.2.3 Плоские прямоугольные координаты и дирекционный угол
- •1.2.4 Связь между дирекционным углом и геодезическим азимутом
- •1.2.5 Высоты точек
- •1.3 Система координат 1942 года
- •1.4 Геодезические, нивелирные и гравиметрические сети
- •1.4.1 Геодезические сети
- •1.4.2 Нивелирные сети
- •1.4.3 Гравиметрические сети
- •1.5 Центры и знаки геодезической, нивелирной и гравиметрической сетей
- •1.5.1 Центры
- •1.5.2 Геодезические знаки
- •1.5.3 Постройка простой пирамиды
- •2 Правила вычислений, ошибки измерений
- •2.1 Основные правила вычислений
- •2.1.1 Общие правила вычислений
- •2.1.2 Правила округления чисел
- •2.1.3 Правила действий с приближенными числами
- •2.2 Сведения о тригонометрических функциях
- •2.2.1 Тригонометрические функции острого угла
- •2.2.2 Тригонометрические функции произвольного угла
- •2.2.3 Таблицы натуральных значений тригонометрических функций
- •2.3 Основные геодезические задачи
- •2.3.1 Прямая геодезическая задача
- •2.3.2 Обратная геодезическая задача
- •2.3.3 Решение треугольника
- •2.4 Ошибки измерений
- •2.4.1 Понятие об измерениях
- •2.4.2 Классификация ошибок измерений
- •2.4.3 Оценка точности результатов измерений
- •2.4.4 Средняя квадратичная ошибка
- •2.4.5 Относительная ошибка
- •2.4.6 Предельная ошибка
- •3 Приборы для измерения углов, расстояний и превышений
- •3.1 Угломерные приборы. Измерение углов
- •3.1.1 Теодолит т2
- •3.1.2 Теодолит т5
- •3.1.3 Теодолиты 2т30, 2т30п
- •3.1.4 Поверки и юстировки теодолитов т2, т5, т5 к
- •1. Поверка перпендикулярности оси уровня при алидаде горизонтального круга к вертикальной оси вращения теодолита.
- •2. Поверка правильности вращения алидады горизонтального круга.
- •3. Поверка правильности установки сетки нитей зрительной трубы.
- •4. Поверка перпендикулярности визирной оси трубы к оси вращения трубы (поверка коллимационной ошибки).
- •3.1.5 Поверка перпендикулярности горизонтальной трубы к вертикальной оси вращения теодолита
- •5. Поверка правильности вращения трубы вокруг горизонтальной оси.
- •6. Поверка уровня при алидаде вертикального круга.
- •7. Поверка компенсатора теодолита т5к.
- •8. Поверка места нуля теодолита т5к.
- •9. Поверка оптического отвеса.
- •3.1.6 Поверки и юстировки теодолита 2т30
- •1. Ось цилиндрического уровня на алидаде горизонтального круга должна быть перпендикулярна к вертикальной оси.
- •2. Визирная ось зрительной трубы должна быть перпендикулярна к горизонтальной оси.
- •4. Основной вертикальный штрих сетки нитей должен быть перпендикулярен к горизонтальной оси.
- •5. Место нуля вертикального круга должно быть известно или приведено к нулю.
- •3.1.7 Подготовка теодолита к работе. Правила обращения с теодолитом
- •3.1.8 Измерение горизонтальных углов
- •3.1.9 Измерение вертикальных углов
- •3.1.10 Определение элементов приведения
- •3.2. Приборы для измерения расстоянии
- •3.2.1 Землемерные стальные ленты
- •3.2.2 Измерение линий мерными лентами
- •3.2.3 Светодальномеры
- •3.3 Нивелиры. Геометрическое нивелирование
- •3.3.1 Нивелир н3
- •3.3.2 Нивелир нс3
- •3.3.3 Нивелир нс4
- •3.3.4 Нивелир нв-1
- •3.3.5 Нивелирные рейки
- •3.3.6 Поверки нивелиров
- •5. Поверка правильности установки круглого уровня на рейке.
- •3.3.7 Порядок работы при нивелировании
- •4 Геодезическое ориентирование
- •4.1 Общие понятия о геодезическом ориентировании
- •4.2 Определение координат при передаче ориентирования
- •4.2.1 Определение координат отдельных точек
- •4.2.2 Определение координат точек методом полигонометрии
- •4.2.3 Отыскание грубых ошибок в полигонометрических ходах
- •4.2.4 Определение координат точек методом триангуляции
- •5 Определение высот отдельных точек
- •5.1 Определение высот точек методом геометрического нивелирования
- •5.2 Определение высот точек методом тригонометрического нивелирования
- •6 Топографические карты
- •6.1 Основные разновидности карт
- •6.2 Математическая основа карт
- •6.3 Топографические карты
- •6.4 Специальные карты и планы городов
- •6.5 Проекция топографических карт
- •6.6 Разграфка и номенклатура топографических карт
- •6.7 Рельеф местности и его изображение на картах
- •6.7.1 Формы рельефа
- •6.7.2 Характеристика скатов
- •6.7.3 Изображение рельефа на картах
- •6.7.4 Изображение форм рельефа, не выражающихся на карте горизонталями
- •6.7.5 Особенности изображения рельефа на топографических картах масштабов 1: 500 000 и 1 : 1 000 000
- •6.7.6 Изучение рельефа по карте
- •6.7.7 Изучение рельефа по карте
- •6.8 Содержание топографических карт
- •6.8.1 Основные элементы содержания карты
- •6.8.2 Гидрография
- •6.8.3 Гидротехнические сооружения
- •6.8.4 Растительный покров и грунты
- •6.8.5 Дорожная сеть
- •6.8.6 Населенные пункты
- •6.8.7 Промышленные, сельскохозяйственные и социально-культурные объекты
- •6.8.8 Геодезические пункты
- •6.8.9 Границы
- •6.8.10 Зарамочное оформление карт
- •6.9 Измерения по карте
- •6.9.1 Измерение расстояний
- •6.9.2 Измерение длины маршрута
- •6.9.3 Определение площадей
- •6.9.4 Определение азимутов и дирекционных углов
- •6.10 Определение координат объектов на земной поверхности
- •6.10.1 Системы координат, применяемые в топографии
- •6.10.2 Определение географических (геодезических) координат точек по карте
- •6.10.3 Плоские прямоугольные координаты и топографическая карта
- •6.10.4 Полярные и биполярные координаты
- •6.10.5 Звездное небо
2.1.2 Правила округления чисел
Все числовые значения (числа), полученные в результате различного рода измерений (в том числе и геодезических), являются приближенными. Это объясняется тем, что измерительные приборы не являются абсолютно точными, а также тем, что на результаты измерений существенное влияние оказывают внешние условия, в которых проводятся измерения.
Опускание (отбрасывание) излишних цифр младших разрядов называется округлением чисел, а разность между округленным и неокругленным числами называется ошибкой округления.
При геодезических вычислениях числа округляют по правилу, предложенному Гауссом. Это правило состоит в следующем:
если отбрасываемый остаток числа менее 0,5 единицы предыдущего разряда, оставшиеся цифры не изменяют.
Пример. Если принять число π равным 3,141 593, то оно, округленное до.пяти знаков после запятой, будет равно 3,141 59;
если отбрасываемый остаток числа более 0,5 единицы предыдущего разряда, последнюю оставшуюся цифру увеличивают на единицу.
Пример. Число π, округленное до четырех знаков после запятой, будет равно 3,1416;
если отбрасываемый остаток числа равен 0,5 единицы предыдущего разряда, число округляют в сторону четного.
Пример. Число 1,35 так же, как и число 1,45, округляется до 1,4.
Применение правила Гаусса при округлении позволяет:
легко установить максимально возможную ошибку округления любого числа (она никогда не будет превышать 0,5 единицы последнего знака);
значительно ослабить влияние ошибок округления на точность окончательного результата при действии с приближенными числами за счет компенсации ошибок округления, имеющих различные знаки – «плюс» и «минус».
2.1.3 Правила действий с приближенными числами
При действиях с приближенными числами в каждом числе необходимо различать десятичные знаки, значащие цифры и верные цифры. Десятичными знаками называются все цифры, стоящие после запятой. Значащими цифрами называются все цифры числа, кроме нулей слева и нулей справа, которые в последнем случае заменяют неизвестные цифры. Верными называются цифры, доверие к которым не вызывает сомнения, а также цифры, ошибка округления которых не превышает 0,5 единицы последнего знака.
Примеры:
1. При измерении длины линии землемерной лентой получен результат 71,32 м. В этом числе два десятичных знака, четыре значащие цифры и только три верные цифры, так как на мерной ленте нет шкалы сантиметров, поэтому отсчеты, снятые глазомерно, имеют малую степень доверия.
2. В равенстве 1 км = 1000 м число 1000 имеет четыре значащие цифры, так как нули не заменяют собой неизвестные цифры, а являются верными цифрами.
Более точными числами считают те, в которых содержится большее количество десятичных знаков. Как правило, такими числами являются значения тригонометрических функций и другие табличные значения.
Менее точными числами считают те, в которых содержится меньшее количество десятичных знаков. Как правило, такими числами являются результаты различного рода измерений.
Действия с приближенными числами выполняют с соблюдением определенных правил.
Правило 1. При сложении приближенные числа округляют так, чтобы в них оставалось на один десятичный знак больше, чем в наиболее грубом слагаемом. Полученную сумму округляют до количества десятичных знаков наиболее грубого слагаемого.
Пример. Найти сумму чисел +1,2; -2,35; +3,454; +4,5543.
Решение. +1,2-2,35 + 3,45 + 4,55= +6,85= +6,8.
Правило 2. При вычитании не следует производить округление приближенных чисел, так как может произойти потеря точности окончательного результата (особенно в случае, когда уменьшаемое и вычитаемое – числа, близкие по абсолютной величине).
Пример. 47,104 - 47,1=0,004. Если уменьшаемое округлить, отбросив последний десятичный знак, то в результате разность будет равна нулю (47,10 - 47,1 = 0), что может внести ошибку в окончательный результат вычислений.
Правило 3. При умножении и делении приближенные числа округляют так, чтобы в них оставалось на одну значащую цифру больше, чем их имеется в числе с наименьшим количеством значащих цифр. Полученный результат округляют до числа, имеющего столько значащих цифр, сколько их имелось в числе с наименьшим количеством значащих цифр.
Примеры:
1. Найти произведение 12,2×73,564.
Решение. 12,2×73,56 = 897,5 = 898.
2. Найти частное от деления 25,713 : 3,6.
Решение. 25,7 : 3,6 = 7,14 = 7,1.
Правило 4. При умножении приближенного числа на точное число К ошибка произведения увеличивается в К раз, т. е. умножение понижает точность окончательного результата.
Пример. Приближенное число 1,2 имеет ошибку, равную половине последнего знака: ± 0,05. При умножении на точное число К = 5 получим 1,2×5 = 6,0. Если считать, что число 1,2 получилось в результате округления чисел 1,25 или 1,15, то получим 1,25×5 = 6,25 или 1,15×5 = 5,75, т. е. возможная ошибка конечного результата составит ±0,25.
Правило 5. При делении приближенного числа на точное число К ошибка частного уменьшается в К раз, т: е. деление повышает точность окончательного результата.
Пример. 1,2 : 5 = 0,24. В тоже время 1,25 : 5=0,25 и 1,15 : 5 = 0,23, т. е. возможная ошибка результата составит всего ±0,01.
Правило 6. Следует избегать деления чисел на приближенное число с малым количеством значащих цифр, так как точность результата в этом случае снижается.
Пример. 5286 : 0,25 = 21144, однако по правилу 3 можно записать только 21000.
Правило 7. При возведении приближенного числа в степень в окончательном результате сохраняют столько значащих цифр, сколько имелось их в самом приближенном числе.
Пример. 9,862 = 97,2.
Правило 8. При извлечении корня из приближенного числа в окончательном результате сохраняют столько значащих цифр, сколько имелось их в самом приближенном числе.
Пример.
=
3,513.
Правило 9. При вычислениях с большим количеством операций (действий) во всех промежуточных результатах сохраняют на одну цифру больше, чем указано в предыдущих правилах. Это позволяет повысить, точность 'окончательного результата. Окончательный результат округляют согласно указанным правилам.
Контрольные вопросы и упражнения:
1. Какие числа называются округленными? Рассказать на примерах о правиле Гаусса по округлению приближенных чисел.
2. Какие цифры в приближенном числе называются десятичными знаками, значащими цифрами и верными цифрами? Привести пример. Какие числа являются более точными и менее точными?
3. Перечислить основные правила действий с приближенными числами.
4. Решить примеры:
а) 12,356 + 17,4 + 0,95 + 141,03;
15,493 - 14,03;
б) 16,392×21,3;
53,248 : 7,4;
в) 12,32;
;
г) (88,213×214,3) : (0,95×73,623).